F. Wu, M. Misra, A.K. Mohanty, Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 117, 101395 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101395
R. Grace, Closing the circle: reshaping how products are conceived and made. Plast. Eng. 73, 8–11 (2017). https://doi.org/10.1002/j.1941-9635.2017.tb01670.x
F. Allen, J. Gasparro, J. Swaney, M. Phelan, J. Gillespie, Directive 2004/38/EC of the European Parliament and of the Council of 29 April 2004, Immigration Law Handbook (2023) 2253-C79P212. https://doi.org/10.1093/oso/9780192896292.003.0079
T. No, 301: Ready biodegradability. OECD (1992). https://doi.org/10.1787/9789264070349-en
P.A. Vanrolleghen, K.J. Keesman. Identification of biodegradation models under model and data uncertainty, Water Sci. Technol. (1996). https://doi.org/10.1016/0273-1223(96)00192-8
P.G. Polishchuk, T.I. Madzhidov, A. Varnek, Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27, 675–679 (2013). https://doi.org/10.1007/s10822-013-9672-4
Article CAS PubMed Google Scholar
D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988). https://doi.org/10.1021/ci00057a005
C. Bilodeau, W. Jin, T. Jaakkola, R. Barzilay, K.F. Jensen, Generative models for molecular discovery: recent advances and challenges. WIREs Comput. Mol. Sci. (2022). https://doi.org/10.1002/wcms.1608
M. Olivecrona, T. Blaschke, O. Engkvist, H. Chen, Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017). https://doi.org/10.1186/s13321-017-0235-x
Article PubMed Central PubMed Google Scholar
P.-H. Chiu, Y.-L. Yang, H.-K. Tsao, Y.-J. Sheng, Deep learning for predictions of hydrolysis rates and conditional molecular design of esters. J. Taiwan Inst. Chem. Eng. 126, 1–13 (2021). https://doi.org/10.1016/j.jtice.2021.06.045
M. Wang, C.-Y. Hsieh, J. Wang, D. Wang, G. Weng, C. Shen, X. Yao, Z. Bing, H. Li, D. Cao, T. Hou, RELATION: a deep generative model for structure-based de novo drug design. J. Med. Chem. 65, 9478–9492 (2022). https://doi.org/10.1021/acs.jmedchem.2c00732
Article CAS PubMed Google Scholar
J. Arús-Pous, A. Patronov, E.J. Bjerrum, C. Tyrchan, J.-L. Reymond, H. Chen, O. Engkvist, SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminform. 12, 38 (2020). https://doi.org/10.1186/s13321-020-00441-8
Article CAS PubMed Central PubMed Google Scholar
N. De Cao, T. Kipf, MolGAN: An implicit generative model for small molecular graphs, ArXiv abs/1805.1 (2018) null. https://www.semanticscholar.org/paper/def1049b5aae96c8e1eab0ca58d77ac9c2f0e3e9
W. Tang, Y. Li, Y. Yu, Z. Wang, T. Xu, J. Chen, J. Lin, X. Li, Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms. Chemosphere 253, 126666 (2020). https://doi.org/10.1016/j.chemosphere.2020.126666
Article CAS PubMed Google Scholar
O. Dollar, N. Joshi, D.A.C. Beck, J. Pfaendtner, Attention-based generative models for de novo molecular design. Chem. Sci. 12, 8362–8372 (2021). https://doi.org/10.1039/d1sc01050f
Article CAS PubMed Central PubMed Google Scholar
F. Lunghini, G. Marcou, P. Gantzer, P. Azam, D. Horvath, E. Van Miert, A. Varnek, Modelling of ready biodegradability based on combined public and industrial data sources. SAR QSAR Environ. Res. 31, 171–186 (2019). https://doi.org/10.1080/1062936x.2019.1697360
Article CAS PubMed Google Scholar
W.F.C. Rocha, D.A. Sheen, Classification of biodegradable materials using QSAR modelling with uncertainty estimation. SAR QSAR Environ. Res. 27, 799–811 (2016). https://doi.org/10.1080/1062936X.2016.1238010
Article CAS PubMed Google Scholar
K. Acharya, D. Werner, J. Dolfing, M. Barycki, P. Meynet, W. Mrozik, O. Komolafe, T. Puzyn, R.J. Davenport, A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals. Water Res. 157, 181–190 (2019). https://doi.org/10.1016/j.watres.2019.03.086
Article CAS PubMed Google Scholar
B. Barros, P. Lacerda, C. Albuquerque, A. Conci, Pulmonary COVID-19: learning spatiotemporal features combining CNN and LSTM networks for lung ultrasound video classification. Sensors (Basel) (2021). https://doi.org/10.3390/S21165486
H.V. Dang, H. Tran-Ngoc, T.V. Nguyen, T. Bui-Tien, G. De Roeck, H.X. Nguyen, Data-driven structural health monitoring using feature fusion and hybrid deep learning. IEEE Trans. Autom. Sci. Eng. 18, 2087–2103 (2021). https://doi.org/10.1109/TASE.2020.3034401
P. Bilokon, Y. Qiu, Transformers versus LSTMs for electronic trading. SSRN Electron. J. (2023). https://doi.org/10.2139/ssrn.4577922
Y. Tatsunami, M. Taki, Sequencer: Deep LSTM for Image Classification, Adv Neural Inf Process Syst 35 (2022). https://arxiv.org/abs/2205.01972v4. Accessed 29 Apr 2024
A. Zeyer, P. Bahar, K. Irie, R. Schluter, H. Ney, A Comparison of Transformer and LSTM Encoder Decoder Models for ASR, 2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings (2019) 8–15. https://doi.org/10.1109/ASRU46091.2019.9004025
R.T.B.D.T.R. Mansouri Kamel, V. Consonni, QSAR biodegradation, (2013)
P. Dey, S.K. Chaulya, S. Kumar, Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process. Saf. Environ. Prot. 152, 249–263 (2021). https://doi.org/10.1016/J.PSEP.2021.06.005
Y. Zhao, Improvement and application of multi-layer LSTM Algorithm based on spatial-temporal correlation. Ingénierie Des Systèmes d Inf. 25 (2020) null. https://doi.org/10.18280/isi.250107
C. Ding, G. Wang, X. Zhang, Q. Liu, X. Liu, A hybrid CNN-LSTM model for predicting PM2.5 in Beijing based on spatiotemporal correlation. Environ. Ecol. Stat. 28, 503–522 (2021). https://doi.org/10.1007/s10651-021-00501-8
D.Q. Gbadago, J. Moon, M. Kim, S. Hwang, A unified framework for the mathematical modelling, predictive analysis, and optimization of reaction systems using computational fluid dynamics, deep neural network and genetic algorithm: a case of butadiene synthesis. Chem. Eng. J. 409, 128163 (2021). https://doi.org/10.1016/j.cej.2020.128163
J. Moon, D.Q. Gbadago, G. Hwang, D. Lee, S. Hwang, Software platform for high-fidelity-data-based artificial neural network modeling and process optimization in chemical engineering. Comput. Chem. Eng. 158, 107637 (2022). https://doi.org/10.1016/J.COMPCHEMENG.2021.107637
P. Dey, K. Saurabh, C. Kumar, D. Pandit, S.K. Chaulya, S. Ray, G.M. Prasad, S.K. Mandal, t-SNE and variational auto-encoder with a bi-LSTM neural network-based model for prediction of gas concentration in a sealed-off area of underground coal mines. Soft. Comput. 25, 14183–14207 (2021). https://doi.org/10.1007/s00500-021-06261-8
W. Wang, A Pre-trained Conditional Transformer for Target-specific De Novo Molecular Generation, (2022). https://www.semanticscholar.org/paper/ed9763062daec0eec7ceb65e822360e340c75605
X. Yang, Z. Zhang, An attention-based domain spatial-temporal meta-learning (ADST-ML) approach for PM2.5 concentration dynamics prediction. Urban Clim. (2023). https://doi.org/10.1016/j.uclim.2022.101363
Article PubMed Central PubMed Google Scholar
N. Xu, X. Wang, X. Meng, H. Chang, Gas concentration prediction based on IWOA-LSTM-CEEMDAN residual correction model. Sensors (Basel) (2022). https://doi.org/10.3390/s22124412
Article PubMed Central PubMed Google Scholar
L. Pingyang, N. Chen, M. Shanjun, L. Mei, LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion. Process. Saf. Environ. Prot. 137, 93–105 (2020). https://doi.org/10.1016/j.psep.2020.02.021
K. Kumari, P. Dey, C. Kumar, D. Pandit, S. Mishra, V. Kisku, S.K. Chaulya, S. Ray, G.M. Prasad, UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine. Process. Saf. Environ. Prot. 146, 837–852 (2021). https://doi.org/10.1016/j.psep.2020.12.019
M. Popova, O. Isayev, A. Tropsha, Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018). https://doi.org/10.1126/sciadv.aap7885
Comments (0)