A multi-glycomic platform for the analysis of food carbohydrates

Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

Article  CAS  PubMed  Google Scholar 

Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Wardman, J. F., Bains, R. K., Rahfeld, P. & Withers, S. G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 20, 542–556 (2022).

Article  CAS  PubMed  Google Scholar 

Cronin, P., Joyce, S. A., O’Toole, P. W. & O’Connor, E. M. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhingra, D., Michael, M., Rajput, H. & Patil, R. T. Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012).

Article  CAS  PubMed  Google Scholar 

Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

Article  CAS  PubMed  Google Scholar 

Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

Article  CAS  PubMed  Google Scholar 

Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Delannoy-Bruno, O. et al. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc. Natl Acad. Sci. USA 119, e2123411119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Grady, J., O’Connor, E. M. & Shanahan, F. Review article: dietary fibre in the era of microbiome science. Aliment. Pharmacol. Ther. 49, 506–515 (2019).

Article  PubMed  Google Scholar 

Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

Article  CAS  PubMed  Google Scholar 

Barratt, M. J., Lebrilla, C., Shapiro, H. Y. & Gordon, J. I. The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22, 134–141 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amicucci, M. J., Nandita, E. & Lebrilla, C. B. Function without structures: the need for in-depth analysis of dietary carbohydrates. J. Agric. Food Chem. 67, 4418–4424 (2019).

Article  CAS  PubMed  Google Scholar 

Wong, M., Xu, G. G., Park, D., Barboza, M. & Lebrilla, C. B. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci. Rep. 8, 10993 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Park, D. D. et al. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem. Sci. 9, 6271–6285 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu, C. S. et al. Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9, 1939–1951 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barboza, M. et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteom. 11, M111.015248 (2012).

Article  Google Scholar 

Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480 (2006).

Article  CAS  PubMed  Google Scholar 

Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Q. Y., Xie, Y. X., Wong, M. R., Barboza, M. & Lebrilla, C. B. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat. Protoc. 15, 2668–2704 (2020).

Article  CAS  PubMed  Google Scholar 

Ehlers Cheang, S. et al. Combined alcohol soluble carbohydrate determination (CASCADE) of food. ACS Food Sci. Technol. 4, 554–560 (2024).

Article  CAS  Google Scholar 

Amicucci, M. J. G. et al. A rapid-throughput adaptable method for determining the monosaccharide composition of polysaccharides. Int. J. Mass Spectrom. 438, 22–28 (2019).

Article  CAS  Google Scholar 

Xu, G. G., Amicucci, M. J., Cheng, Z., Galermo, A. G. & Lebrilla, C. B. Revisiting monosaccharide analysis—quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 143, 200–207 (2018).

Article  CAS  Google Scholar 

Castillo, J. J. et al. The development of the Davis Food Glycopedia—a glycan encyclopedia of food. Nutrients 14, 1639 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galermo, A. G. et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages. Anal. Chem. 90, 13073–13080 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galermo, A. G., Nandita, E., Castillo, J. J., Amicucci, M. J. & Lebrilla, C. B. Development of an extensive linkage library for characterization of carbohydrates. Anal. Chem. 91, 13022–13031 (2019).

Comments (0)

No login
gif