Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
Article CAS PubMed Google Scholar
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).
Article PubMed PubMed Central Google Scholar
Wardman, J. F., Bains, R. K., Rahfeld, P. & Withers, S. G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 20, 542–556 (2022).
Article CAS PubMed Google Scholar
Cronin, P., Joyce, S. A., O’Toole, P. W. & O’Connor, E. M. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dhingra, D., Michael, M., Rajput, H. & Patil, R. T. Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012).
Article CAS PubMed Google Scholar
Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).
Article CAS PubMed PubMed Central Google Scholar
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
Article CAS PubMed Google Scholar
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
Article CAS PubMed Google Scholar
Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).
Article PubMed PubMed Central Google Scholar
Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).
Article CAS PubMed PubMed Central Google Scholar
Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).
Article PubMed PubMed Central Google Scholar
Delannoy-Bruno, O. et al. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc. Natl Acad. Sci. USA 119, e2123411119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).
Article CAS PubMed PubMed Central Google Scholar
O’Grady, J., O’Connor, E. M. & Shanahan, F. Review article: dietary fibre in the era of microbiome science. Aliment. Pharmacol. Ther. 49, 506–515 (2019).
Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).
Article CAS PubMed Google Scholar
Barratt, M. J., Lebrilla, C., Shapiro, H. Y. & Gordon, J. I. The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22, 134–141 (2017).
Article CAS PubMed PubMed Central Google Scholar
Amicucci, M. J., Nandita, E. & Lebrilla, C. B. Function without structures: the need for in-depth analysis of dietary carbohydrates. J. Agric. Food Chem. 67, 4418–4424 (2019).
Article CAS PubMed Google Scholar
Wong, M., Xu, G. G., Park, D., Barboza, M. & Lebrilla, C. B. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci. Rep. 8, 10993 (2018).
Article PubMed PubMed Central Google Scholar
Park, D. D. et al. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem. Sci. 9, 6271–6285 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chu, C. S. et al. Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9, 1939–1951 (2009).
Article CAS PubMed PubMed Central Google Scholar
Barboza, M. et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteom. 11, M111.015248 (2012).
Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480 (2006).
Article CAS PubMed Google Scholar
Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151 (2010).
Article CAS PubMed PubMed Central Google Scholar
Li, Q. Y., Xie, Y. X., Wong, M. R., Barboza, M. & Lebrilla, C. B. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat. Protoc. 15, 2668–2704 (2020).
Article CAS PubMed Google Scholar
Ehlers Cheang, S. et al. Combined alcohol soluble carbohydrate determination (CASCADE) of food. ACS Food Sci. Technol. 4, 554–560 (2024).
Amicucci, M. J. G. et al. A rapid-throughput adaptable method for determining the monosaccharide composition of polysaccharides. Int. J. Mass Spectrom. 438, 22–28 (2019).
Xu, G. G., Amicucci, M. J., Cheng, Z., Galermo, A. G. & Lebrilla, C. B. Revisiting monosaccharide analysis—quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 143, 200–207 (2018).
Castillo, J. J. et al. The development of the Davis Food Glycopedia—a glycan encyclopedia of food. Nutrients 14, 1639 (2022).
Article CAS PubMed PubMed Central Google Scholar
Galermo, A. G. et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages. Anal. Chem. 90, 13073–13080 (2018).
Article CAS PubMed PubMed Central Google Scholar
Galermo, A. G., Nandita, E., Castillo, J. J., Amicucci, M. J. & Lebrilla, C. B. Development of an extensive linkage library for characterization of carbohydrates. Anal. Chem. 91, 13022–13031 (2019).
Comments (0)