Antibacterial, Antioxidant, and Healing Potential of Wound Dressings Utilizing Cranberry Extract in Combination with Methacrylated Polyvinyl Alcohol and Methacrylated Sericin

Chao S, Li Y, Zhao R, Li Z, Li Y, Wang C, Li X. Synthesis and characterization of tigecycline loaded sericin/poly(vinyl alcohol) composite fibers via electrospinning as antibacterial wound dressings. J Drug Deliv Sci Technol. 2018;44:440–7. https://doi.org/10.1016/j.jddst.2018.01.022.

Article  CAS  Google Scholar 

Rezvani Ghomi R, Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S. Wound dressings: current advances and future directions. J Appl Polym Sci. 2019;136(2):47738. https://doi.org/10.1002/app.47738.

Article  CAS  Google Scholar 

Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound healing: current state-of-the-art and future perspectives. J Polym Res. 2022;29(3):91. https://doi.org/10.1007/s10965-021-02870-x.

Article  CAS  Google Scholar 

Chi J, Zou M, Wang S, Liu C, Hu R, Jiang Z, Liu W, Sun R, Han B. Novel dopamine-modifies oxidized sodium ilginçte hydrogels promote angiogenesis and accelerate healing of chronic wounds. Int J Biol Macromol. 2022;203:492–504. https://doi.org/10.1016/j.ijbiomac.2022.01.153.

Article  CAS  PubMed  Google Scholar 

Li M, Pan G, Zhang H, Guo B. Hydrogel adhesives for generalized wound treatment: design and applications. J Polym Sci. 2022;60(8):1328–59. https://doi.org/10.1002/pol.20210916.

Article  CAS  Google Scholar 

Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing. Chem Asian J. 2022;17(21):e202200595. https://doi.org/10.1002/asia.202200595.

Article  CAS  PubMed  Google Scholar 

Peng W, Li D, Dai K, Wang Y, Song P, Tang P, Zhang Z, Li Z, Zhou Y, Zhou C. Recent progress of collagen, chitosan, ilginçte and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol. 2022;208:400–8. https://doi.org/10.1016/j.ijbiomac.2022.03.002.

Article  CAS  PubMed  Google Scholar 

Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh DH, Venkatasubbu GD. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci. 2019;479:1169–77. https://doi.org/10.1016/j.apsusc.2019.02.189.

Article  CAS  Google Scholar 

Jafari A, Hassanajili S, Karimi MB, Emami A, Ghaffari F, Azarpina N. Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposite for potential wound dressing applications. J Mech Behav Biomed Mater. 2018;88:395–405. https://doi.org/10.1016/j.jmbbm.2018.09.001.

Article  CAS  PubMed  Google Scholar 

Özkahraman B, Tamahkar E, İdil N, Suloglu A, Perçin I. Evaluation of hyaluronic acid nanoparticles embedded chitosan-gelatin hydrogels for antibiotic release. Drug Dev Res. 2021;82(2):241–50. https://doi.org/10.1002/ddr.21747.

Article  CAS  PubMed  Google Scholar 

Tamahkar E, Özkahraman B, Özbaş Z, İzbudak B, Yarımcan F, Boran F, Bal-Öztürk A. Aloe vera-based antibacterial porous sponges for wound dressing applications. J Porous Mater. 2021;28:741–50. https://doi.org/10.1007/s10934-020-01029-1.

Article  CAS  Google Scholar 

Arafa AA, Nada AA, Ibrahim AY, Sajkiewicz P, Zahran MK, Hakeim OA. Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int J Biol Macromol. 2021;182:1820–31. https://doi.org/10.1016/j.ijbiomac.2021.05.167.

Article  CAS  PubMed  Google Scholar 

Zhang W, Qi X, Zhao Y, Liu Y, Xu L, Song X, Xiao C, Yuan X, Zhang J, Hou M. Study of injectable blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm. 2020;586:119543. https://doi.org/10.1016/j.ijpharm.2020.119543.

Article  CAS  PubMed  Google Scholar 

Kang MH, Choi S, Kim BH. Skin wound healing effects and action mechanism of acai berry water extracts. Tox Res. 2017;33:149–56. https://doi.org/10.5487/TR.2017.33.2.149.

Article  CAS  Google Scholar 

Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y. Cranberry: chemical composition, antioxidant activity and impact on human health: overview. Molecules. 2022;2022(27):1503. https://doi.org/10.3390/molecules27051503.

Article  CAS  Google Scholar 

Rizwana H, Khan M, Aldehaish HA, Adil SF, Shaik MR, Assal ME, Hatshan MR, Siddiqui MRH. Green biosynthesis of silver nanoparticles using Vaccinium oxycoccos (cranberry) extract and evaluation of their biomedical potential. Crystals. 2023;13(2):294. https://doi.org/10.3390/cryst13020294.

Article  CAS  Google Scholar 

Rao KM, Sudhakar K, Suneetha M, Won SY, Han SS. Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings. Int J Biol Macromol. 2021;190:792–800. https://doi.org/10.1016/j.ijbiomac.2021.09.034.

Article  CAS  PubMed  Google Scholar 

Rajendran R, Balakumar C, Sivakumar R, Amruta T, Devaki N. Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst. 2012;103(4):458–62. https://doi.org/10.1080/00405000.2011.586151.

Article  CAS  Google Scholar 

Punyamoonwongsa P, Klayya S, Sajomsang W, Kunyanee C, Aueviriyavit S. Silk sericin semi-interpenetrating network hydrogels based on PEG-diacrylate for wound healing treatment. Int J Polym Sci. 2019;1–10. https://doi.org/10.1155/2019/4740765.

Carvalho IC, Mansur HS. Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Mater Sci Eng C. 2017;78:690–705. https://doi.org/10.1016/j.msec.2017.04.126.

Article  CAS  Google Scholar 

Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. pH responsive release of curcumin from photocrosslinked pectin/gelatin hydrogel wound dressings. Biomater Adv. 2022;134:112717. https://doi.org/10.1016/j.msec.2022.112717.

Article  CAS  PubMed  Google Scholar 

Maiz-Fernández S, Pérez-Álvarez L, Silván U, Vilas-Vilela JL, Lanceros-Mendez S. Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. Int J Biol Macromol. 2022;216:291–302. https://doi.org/10.1016/j.ijbiomac.2022.07.004.

Article  CAS  PubMed  Google Scholar 

Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly (vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. 2003;14(8):687–91. https://doi.org/10.1023/A:1024907615244.

Article  CAS  PubMed  Google Scholar 

Lim KS, Kundu J, Reeves A, Poole-Warren LA, Kundu SC, Martens PJ. The Influence of silkworm species on cellular ınteractions with novel PVA/silk sericin hydrogels. Macromol Biosci. 2012;12(3):322–32. https://doi.org/10.1002/mabi.201100292.

Article  CAS  PubMed  Google Scholar 

Kim JE, Kim EH, Lee KH. Preparation of photo-crosslinkable silk sericin hydrogel. Int J Ind Entomol. 2018;36(1):10–4. https://doi.org/10.7852/ijie.2018.36.1.10.

Article  Google Scholar 

Zhang C, Liang K, Zhou D, Yang H, Liu X, Yin X, Xu W, Zhou Y, Xiao P. High-performance photopolymerized poly(vinyl alcohol)/silica nanocomposite hydrogels with enhanced cell adhesion. ACS Appl Mater Interfaces. 2018;10(33):27692–700. https://doi.org/10.1021/acsami.8b09026.

Article  CAS  PubMed  Google Scholar 

Zhang J, Liu Z, Wang Q. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement. Polymer. 2019;173:103–9. https://doi.org/10.1016/j.polymer.2019.04.028.

Article  CAS  Google Scholar 

Liu J, Deng Y, Fu D, Yuan Y, Li Q, Shi L, Wang G, Wang Z, Wang L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact Mater. 2021;6(1):273–84. https://doi.org/10.1016/j.bioactmat.2020.08.006.

Article  CAS  PubMed  Google Scholar 

Qi C, Liu J, Jin Y, Xu L, Wang G, Wang Z, Wang L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetric extracellular matrix for minimally invasive repairing cartilage. Biomaterials. 2018;163:89–104. https://doi.org/10.1016/j.biomaterials.2018.02.016.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif