Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209‒249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
2022. Zlokachestvennye novoobrazovaniya v Rossii v 2021 godu (zabolevaemost’ i smertnost’). (Malignant Neoplasms in Russia in 2021 (Morbidity and Mortality)). Kaprin A.D., Starinsky V.V., Shakhzadova A.O., Eds. Moscow: MNIOI im. P.A. Gertsena—filial FGBU NMITs Radiologii Minzdrava Rossii.
Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. 2008. The impact of microRNAs on protein output. Nature. 455 (7209), 64‒71. https://doi.org/10.1038/nature07242
Article CAS PubMed PubMed Central Google Scholar
Esteller M. 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12 (12), 861‒874. https://doi.org/10.1038/nrg3074
Article CAS PubMed Google Scholar
Bure I.V., Kuznetsova E.B., Zaletaev D.V. 2018. Long noncoding RNAs and their role in oncogenesis. Mol. Biol. (Moscow). 52 (6), 787‒798. https://doi.org/10.1134/S0026893318060031
Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. 2019. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 20 (22), 5573. https://doi.org/10.3390/ijms20225573
Article CAS PubMed PubMed Central Google Scholar
Guttman M., Rinn J.L. 2012. Modular regulatory principles of large non-coding RNAs. Nature. 482 (7385), 339‒346. https://doi.org/10.1038/nature10887
Article CAS PubMed PubMed Central Google Scholar
Murtha M., Esteller M. 2016. Extraordinary cancer epigenomics: Thinking outside the classical coding and promoter box. Trends Cancer. 2 (10), 572‒584. https://doi.org/10.1016/j.trecan.2016.08.004
Moutinho C., Esteller M. 2017. MicroRNAs and epigenetics. Adv. Cancer Res. 135, 189‒220. https://doi.org/10.1016/bs.acr.2017.06.003
Article CAS PubMed Google Scholar
Sheng X., Li J., Yang L., Chen Z., Zhao Q., Tan L., Zhou Y., Li J. 2014. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol. Rep. 32 (1), 277‒285. https://doi.org/10.3892/or.2014.3208
Article CAS PubMed Google Scholar
Diaz-Lagares A., Crujeiras A.B., Lopez-Serra P., Soler M., Setien F., Goyal A., Sandoval J., Hashimoto Y., Martinez-Cardús A., Gomez A., Heyn H., Moutinho C., Espada J., Vidal A., Paúles M., Galán M., Sala N., Akiyama Y., Martínez-Iniesta M., Farré L., Villanueva A., Gross M., Diederichs S., Guil S., Esteller M. 2016. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc. Natl. Acad. Sci. U. S. A. 113 (47), E7535‒E7544. https://doi.org/10.1073/pnas.1608585113
Article CAS PubMed PubMed Central Google Scholar
Gokulnath P., de Cristofaro T., Manipur I., Di Palma T., Soriano A.A., Guarracino M.R., Zannini M. 2020. Long non-coding RNA HAND2-AS1 acts as a tumor suppressor in high-grade serous ovarian carcinoma. Int. J. Mol. Sci. 21 (11), 4059. https://doi.org/10.3390/ijms21114059
Article CAS PubMed PubMed Central Google Scholar
Abildgaard C., do Canto L.M., Rainho C.A., Marchi F.A., Calanca N., Waldstrøm M., Steffensen K.D., Rogatto S.R. 2022. The long non-coding RNA SNHG12 as a mediator of carboplatin resistance in ovarian cancer via epigenetic mechanisms. Cancers (Basel). 14 (7), 1664. https://doi.org/10.3390/cancers14071664
Article CAS PubMed PubMed Central Google Scholar
Burdennyy A.M., Filippova E.A., Ivanova N.A., Lukina S.S., Pronina I.V., Loginov V.I., Fridman M.V., Kazubskaya T.P., Utkin D.O., Braga E.A., Kush-linskii N.E. 2021. Hypermethylation of genes in new long noncoding RNA in ovarian tumors and metastases: A dual effect. Bull. Exp. Biol. Med. 171 (3), 370‒374. https://doi.org/10.1007/s10517-021-05230-3
Article CAS PubMed Google Scholar
World Medical Association 2013. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 310 (20), 2191‒2194. https://doi.org/10.1001/jama.2013.281053
2017. The TNM Classification of Malignant Tumours, 8th ed. Brierley J.D., Gospodarowicz M.K., Wittekind C., Eds. Oxford, UK: Wiley-Blackwell.
2014. WHO Classification of Tumours of Female Reproductive Organs, 4th ed. Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H., Eds, Lyon, France: IARC Press, 307.
Pronina I.V., Loginov V.I., Burdennyy A.M., Fridman M.V., Senchenko V.N., Kazubskaya T.P., Kushlinskii N.E., Dmitriev A.A., Braga E.A. 2017. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 604, 1‒8. https://doi.org/10.1016/j.gene.2016.12.018
Article CAS PubMed Google Scholar
van Hoesel A.Q., Sato Y., Elashoff D.A., Turner R.R., Giuliano A.E., Shamonki J.M., Kuppen P.J., van de Velde C.J., Hoon D.S. 2013. Assessment of DNA methylation status in early stages of breast cancer development. Br. J. Cancer. 108, 2033–2038. https://doi.org/10.1038/bjc.2013.136
Article CAS PubMed PubMed Central Google Scholar
Loginov V.I., Pronina I.V., Filippova E.A., Burdennyy A.M., Lukina S.S., Kazubskaya T.P., Uroshlev L.A., Fridman M.V., Brovkina O.I., Apanovich N.V., Karpukhin A.V., Stilidi I.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. 2022. Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: From primary tumors to peritoneal macroscopic metastases. Int. J. Mol. Sci. 23 (3), 1300. https://doi.org/10.3390/ijms23031300
Article CAS PubMed PubMed Central Google Scholar
Ahlgren U., Jonsson J., Jonsson L., Simu K., Edlund H. 1998. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12 (12), 1763‒1768. https://doi.org/10.1101/gad.12.12.1763
Article CAS PubMed PubMed Central Google Scholar
Ebrahim N., Shakirova K., Dashinimaev E. 2022. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front. Mol. Biosci. 9, 1091757. https://doi.org/10.3389/fmolb.2022.1091757
Article CAS PubMed PubMed Central Google Scholar
Kim-Wanner S.Z., Assenov Y., Nair M.B., Weichenhan D., Benner A., Becker N., Landwehr K., Kuner R., Sültmann H., Esteller M., Koch I., Lindner M., Meister M., Thomas M., Bieg M., Klingmüller U., Schlesner M., Warth A., Brors B., Seifried E., Bönig H., Plass C., Risch A., Muley T. 2020. Genome-wide DNA methylation profiling in early stage I lung adenocarcinoma reveals predictive aberrant methylation in the promoter region of the long noncoding RNA PLUT: An exploratory study. J. Thorac. Oncol. 15 (8), 1338‒1350. https://doi.org/10.1016/j.jtho.2020.03.023
Article CAS PubMed Google Scholar
Zimta A.A., Tigu A.B., Braicu C., Stefan C., Ionescu C., Berindan-Neagoe I. 2020. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front. Oncol. 10, 389. https://doi.org/10.3389/fonc.2020.00389
Article PubMed PubMed Central Google Scholar
Wang S., Jiang J., Wang Z., Xie Y., Wu X. 2017. Long non-coding RNA SNHG1 is an unfavorable prognostic factor and promotes cell proliferation and migration by Wnt/β-catenin pathway in epithelial ovarian cancer. Int. J. Clin. Exp. Pathol. 10 (9), 9284‒9292.
PubMed PubMed Central Google Scholar
Wu Y., Zhu B., Yan Y., Bai S., Kang H., Zhang J., Ma W., Gao Y., Hui B., Li R., Zhang X., Ren J. 2021. Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1. Mol. Oncol. 15 (5), 1584‒1596. https://doi.org/10.1002/1878-0261.12932
Article CAS PubMed PubMed Central Google Scholar
Su M., Huang P., Li Q. 2023. Long noncoding RNA SNHG6 promotes the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway. Heliyon. 9 (5), e16291. https://doi.org/10.1016/j.heliyon.2023.e16291
Comments (0)