Participation of Proteins of the CPSF Complex in Polyadenylation of Transcripts Read by RNA Polymerase III from SINEs

Ustyantsev I.G., Golubchikova J.S., Borodulina O.R., Kramerov D.A. 2017. Canonical and noncanonical RNA polyadenylation. Mol. Biol. (Moscow). 51, 226‒236. https://doi.org/10.1134/S0026893317010186

Article  CAS  Google Scholar 

Sun Y., Hamilton K., Tong L. 2020. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription. 11, 83‒96.

Article  PubMed  PubMed Central  Google Scholar 

Liu J., Lu X., Zhang S., Yuan L., Sun Y. 2022. Molecular insights into mRNA polyadenylation and deadenylation. Int. J. Mol. Sci. 23, 10985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boreikaite V., Passmore L.A. 2023. 3'-End processing of eukaryotic mRNA: Machinery, regulation, and impact on gene expression. Annu. Rev. Biochem. 92, 199‒225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Proudfoot N.J. 2011. Ending the message: Poly(A) signals then and now. Genes Dev. 25, 1770‒1782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutierrez P.A., Wei J., Sun Y., Tong L. 2022. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF. RNA. 28, 1534‒1541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y., Sun Y., Shi Y., Walz T., Tong L. 2020. Structural insights into the human pre-mRNA 3'-end processing machinery. Mol. Cell. 77, 800‒809, e806.

Yang Q., Gilmartin G.M., Doublie S. 2010. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Proc. Natl. Acad. Sci. U. S. A. 107, 10062‒10067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y., Wang X., Forouzmand E., Jeong J., Qiao F., Sowd G.A., Engelman A.N., Xie X., Hertel K.J., Shi Y. 2018. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell. 69, 62‒74, e64.

Sachs A., Wahle E. 1993. Poly(A) tail metabolism and function in eucaryotes. J. Biol. Chem. 268, 22955‒22958.

Article  CAS  PubMed  Google Scholar 

Nicholson A.L., Pasquinelli A.E. 2019. Tales of detailed poly(A) tails. Trends Cell Biol. 29, 191‒200.

Article  CAS  PubMed  Google Scholar 

Neve J., Patel R., Wang Z., Louey A., Furger A.M. 2017. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol. 14, 865‒890.

Article  PubMed  PubMed Central  Google Scholar 

Laishram R.S. 2014. Poly(A) polymerase (PAP) diversity in gene expression‒star-PAP vs canonical PAP. FEBS Lett. 588, 2185‒2197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlesworth A., Meijer H.A., de Moor C.H. 2013. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA. 4, 437‒461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norbury C.J. 2013. Cytoplasmic RNA: A case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14, 643‒653.

Article  CAS  PubMed  Google Scholar 

Tatosyan K.A., Ustyantsev I.G., Kramerov D.A. 2020. RNA degradation in eukaryotic cells. Mol. Biol. (Moscow), 54, 485‒502. https://doi.org/10.1134/S0026893320040159

Article  CAS  Google Scholar 

Borodulina O.R., Kramerov D.A. 2008. Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. RNA. 14, 1865‒1873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kramerov D.A., Vassetzky N.S. 2011. SINEs. Wiley Interdiscip. Rev. RNA. 2, 772‒786.

Article  CAS  PubMed  Google Scholar 

Kramerov D.A., Vassetzky N.S. 2011. Origin and evolution of SINEs in eukaryotic genomes. Heredity. (Edinb.). 107, 487‒495.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vassetzky N.S., Kramerov D.A. 2013. SINEBase: A database and tool for SINE analysis. Nucleic Acids Res. 41, D83‒89.

Article  CAS  PubMed  Google Scholar 

Deininger P. 2011. Alu elements: know the SINEs. Genome Biol. 12, 236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borodulina O.R., Kramerov D.A. 2001. Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm. Genome. 12, 779‒786.

Article  CAS  PubMed  Google Scholar 

Ustyantsev I.G., Tatosyan K.A., Stasenko D.V., Kochanova N.Y., Borodulina O.R., Kramerov D.A. 2020. Polyadenylation of sine transcripts generated by RNA polymerase III dramatically prolongs their lifetime in cells. Mol. Biol. (Moscow). 54, 67‒74. https://doi.org/10.1134/S0026893319040150

Article  CAS  Google Scholar 

Borodulina O.R., Ustyantsev I.G., Kramerov D.A. 2023. SINEs as potential expression cassettes: Impact of deletions and insertions on polyadenylation and lifetime of B2 and Ves SINE transcripts generated by RNA polymerase III. Int. J. Mol. Sci. 24 (19), 14600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dewannieux M., Heidmann T. 2005. Role of poly(A) tail length in Alu retrotransposition. Genomics. 86, 378‒381.

Article  CAS  PubMed  Google Scholar 

Vassetzky N.S., Borodulina O.R., Ustyantsev I.G., Kosushkin S.A., Kramerov D.A. 2021. Analysis of SINE families B2, Dip, and Ves with special reference to polyadenylation signals and transcription terminators. Int. J. Mol. Sci. 22 (18), 9897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosushkin S.A., Ustyantsev I.G., Borodulina O.R., Vassetzky N.S., Kramerov D.A. 2022. Tail wags dog’s SINE: Retropositional mechanisms of can SINE depend on its a-tail structure. Biology (Basel). 11 (10), 1403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borodulina O.R., Golubchikova J.S., Ustyantsev I.G., Kramerov D.A. 2016. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences. Biochim. Biophys. Acta. 1859, 355‒365.

Article  CAS  PubMed  Google Scholar 

Ustyantsev I.G., Borodulina O.R., Kramerov D.A. 2021. Identification of nucleotide sequences and some proteins involved in polyadenylation of RNA transcribed by Pol III from SINEs. RNA Biol. 18, 1475‒1488.

Article  CAS  PubMed  Google Scholar 

Chomczynski P., Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate−phenol−chloroform extraction: Twenty-something years on. Nat. Protoc. 1, 581‒585.

Article  CAS  PubMed  Google Scholar 

Clerici M., Faini M., Muckenfuss L.M., Aebersold R., Jinek M. 2018. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135‒138.

Article  CAS  PubMed 

Comments (0)

No login
gif