Ustyantsev I.G., Golubchikova J.S., Borodulina O.R., Kramerov D.A. 2017. Canonical and noncanonical RNA polyadenylation. Mol. Biol. (Moscow). 51, 226‒236. https://doi.org/10.1134/S0026893317010186
Sun Y., Hamilton K., Tong L. 2020. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription. 11, 83‒96.
Article PubMed PubMed Central Google Scholar
Liu J., Lu X., Zhang S., Yuan L., Sun Y. 2022. Molecular insights into mRNA polyadenylation and deadenylation. Int. J. Mol. Sci. 23, 10985.
Article CAS PubMed PubMed Central Google Scholar
Boreikaite V., Passmore L.A. 2023. 3'-End processing of eukaryotic mRNA: Machinery, regulation, and impact on gene expression. Annu. Rev. Biochem. 92, 199‒225.
Article CAS PubMed PubMed Central Google Scholar
Proudfoot N.J. 2011. Ending the message: Poly(A) signals then and now. Genes Dev. 25, 1770‒1782.
Article CAS PubMed PubMed Central Google Scholar
Gutierrez P.A., Wei J., Sun Y., Tong L. 2022. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF. RNA. 28, 1534‒1541.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y., Sun Y., Shi Y., Walz T., Tong L. 2020. Structural insights into the human pre-mRNA 3'-end processing machinery. Mol. Cell. 77, 800‒809, e806.
Yang Q., Gilmartin G.M., Doublie S. 2010. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Proc. Natl. Acad. Sci. U. S. A. 107, 10062‒10067.
Article CAS PubMed PubMed Central Google Scholar
Zhu Y., Wang X., Forouzmand E., Jeong J., Qiao F., Sowd G.A., Engelman A.N., Xie X., Hertel K.J., Shi Y. 2018. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell. 69, 62‒74, e64.
Sachs A., Wahle E. 1993. Poly(A) tail metabolism and function in eucaryotes. J. Biol. Chem. 268, 22955‒22958.
Article CAS PubMed Google Scholar
Nicholson A.L., Pasquinelli A.E. 2019. Tales of detailed poly(A) tails. Trends Cell Biol. 29, 191‒200.
Article CAS PubMed Google Scholar
Neve J., Patel R., Wang Z., Louey A., Furger A.M. 2017. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol. 14, 865‒890.
Article PubMed PubMed Central Google Scholar
Laishram R.S. 2014. Poly(A) polymerase (PAP) diversity in gene expression‒star-PAP vs canonical PAP. FEBS Lett. 588, 2185‒2197.
Article CAS PubMed PubMed Central Google Scholar
Charlesworth A., Meijer H.A., de Moor C.H. 2013. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA. 4, 437‒461.
Article CAS PubMed PubMed Central Google Scholar
Norbury C.J. 2013. Cytoplasmic RNA: A case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14, 643‒653.
Article CAS PubMed Google Scholar
Tatosyan K.A., Ustyantsev I.G., Kramerov D.A. 2020. RNA degradation in eukaryotic cells. Mol. Biol. (Moscow), 54, 485‒502. https://doi.org/10.1134/S0026893320040159
Borodulina O.R., Kramerov D.A. 2008. Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. RNA. 14, 1865‒1873.
Article CAS PubMed PubMed Central Google Scholar
Kramerov D.A., Vassetzky N.S. 2011. SINEs. Wiley Interdiscip. Rev. RNA. 2, 772‒786.
Article CAS PubMed Google Scholar
Kramerov D.A., Vassetzky N.S. 2011. Origin and evolution of SINEs in eukaryotic genomes. Heredity. (Edinb.). 107, 487‒495.
Article CAS PubMed PubMed Central Google Scholar
Vassetzky N.S., Kramerov D.A. 2013. SINEBase: A database and tool for SINE analysis. Nucleic Acids Res. 41, D83‒89.
Article CAS PubMed Google Scholar
Deininger P. 2011. Alu elements: know the SINEs. Genome Biol. 12, 236.
Article CAS PubMed PubMed Central Google Scholar
Borodulina O.R., Kramerov D.A. 2001. Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm. Genome. 12, 779‒786.
Article CAS PubMed Google Scholar
Ustyantsev I.G., Tatosyan K.A., Stasenko D.V., Kochanova N.Y., Borodulina O.R., Kramerov D.A. 2020. Polyadenylation of sine transcripts generated by RNA polymerase III dramatically prolongs their lifetime in cells. Mol. Biol. (Moscow). 54, 67‒74. https://doi.org/10.1134/S0026893319040150
Borodulina O.R., Ustyantsev I.G., Kramerov D.A. 2023. SINEs as potential expression cassettes: Impact of deletions and insertions on polyadenylation and lifetime of B2 and Ves SINE transcripts generated by RNA polymerase III. Int. J. Mol. Sci. 24 (19), 14600.
Article CAS PubMed PubMed Central Google Scholar
Dewannieux M., Heidmann T. 2005. Role of poly(A) tail length in Alu retrotransposition. Genomics. 86, 378‒381.
Article CAS PubMed Google Scholar
Vassetzky N.S., Borodulina O.R., Ustyantsev I.G., Kosushkin S.A., Kramerov D.A. 2021. Analysis of SINE families B2, Dip, and Ves with special reference to polyadenylation signals and transcription terminators. Int. J. Mol. Sci. 22 (18), 9897.
Article CAS PubMed PubMed Central Google Scholar
Kosushkin S.A., Ustyantsev I.G., Borodulina O.R., Vassetzky N.S., Kramerov D.A. 2022. Tail wags dog’s SINE: Retropositional mechanisms of can SINE depend on its a-tail structure. Biology (Basel). 11 (10), 1403.
Article CAS PubMed PubMed Central Google Scholar
Borodulina O.R., Golubchikova J.S., Ustyantsev I.G., Kramerov D.A. 2016. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences. Biochim. Biophys. Acta. 1859, 355‒365.
Article CAS PubMed Google Scholar
Ustyantsev I.G., Borodulina O.R., Kramerov D.A. 2021. Identification of nucleotide sequences and some proteins involved in polyadenylation of RNA transcribed by Pol III from SINEs. RNA Biol. 18, 1475‒1488.
Article CAS PubMed Google Scholar
Chomczynski P., Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate−phenol−chloroform extraction: Twenty-something years on. Nat. Protoc. 1, 581‒585.
Article CAS PubMed Google Scholar
Clerici M., Faini M., Muckenfuss L.M., Aebersold R., Jinek M. 2018. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135‒138.
Comments (0)