Becalska A.N., Gavis E.R. 2009. Lighting up mRNA localization in Drosophila oogenesis. Dev. Camb. Engl. 136, 2493–2503.
Lasko P. 2012. mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harb. Perspect. Biol. 4, a012294.
Article PubMed PubMed Central Google Scholar
Micklem D.R. 1995. mRNA localisation during development. Dev. Biol. 172, 377–395.
Article CAS PubMed Google Scholar
Kloc M., Zearfoss N.R., Etkin L.D. 2002. Mechanisms of subcellular mRNA localization. Cell. 108, 533–544.
Article CAS PubMed Google Scholar
Turner-Bridger B., Caterino C., Cioni J.-M. 2020. Molecular mechanisms behind mRNA localization in axons. Open Biol. 10, 200177.
Article CAS PubMed PubMed Central Google Scholar
Bashirullah A., Cooperstock R.L., Lipshitz H.D. 1998. RNA localization in development. Annu. Rev. Biochem. 67, 335–394.
Article CAS PubMed Google Scholar
Wang E.T., Taliaferro J.M., Lee J.-A., Sudhakaran I.P., Rossoll W., Gross C., Moss K.R., Bassell G.J. 2016. Dysregulation of mRNA localization and translation in genetic disease. J. Neurosci. 36, 11418–11426.
Article CAS PubMed PubMed Central Google Scholar
Khalil B., Morderer D., Price P.L., Liu F., Rossoll W. 2018. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res. 1693, 75–91.
Article CAS PubMed PubMed Central Google Scholar
Kapitein L.C., Hoogenraad C.C. 2015. Building the neuronal microtubule cytoskeleton. Neuron. 87, 492–506.
Article CAS PubMed Google Scholar
Yogev S., Cooper R., Fetter R., Horowitz M., Shen K. 2016. Microtubule organization determines axonal transport dynamics. Neuron. 92, 449–460.
Article CAS PubMed PubMed Central Google Scholar
Johnstone O., Lasko P. 2001. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu. Rev. Genet. 35, 365–406.
Article CAS PubMed Google Scholar
Hirokawa N., Noda Y., Tanaka Y., Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696.
Article CAS PubMed Google Scholar
Brady S.T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 317, 73–75.
Article CAS PubMed Google Scholar
Vale R.D., Reese T.S., Sheetz M.P. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 42, 39–50.
Article CAS PubMed PubMed Central Google Scholar
Wong Y.L., Rice S.E. 2010. Kinesin’s light chains inhibit the head- and microtubule-binding activity of its tail. Proc. Natl. Acad. Sci. U. S. A. 107, 11781–11786.
Article CAS PubMed PubMed Central Google Scholar
Dimitrova-Paternoga L., Jagtap P.K.A., Cyrklaff A., Vaishali, Lapouge K., Sehr P., Perez K., Heber S., Löw C., Hennig J., Ephrussi A. 2021. Molecular basis of mRNA transport by a kinesin-1-atypical tropomyosin complex. Genes Dev. 35, 976–991.
Article CAS PubMed PubMed Central Google Scholar
Song T., Zheng Y., Wang Y., Katz Z., Liu X., Chen S., Singer R.H., Gu W. 2015. Specific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility. J. Cell Sci. 128, 1001–1010.
CAS PubMed PubMed Central Google Scholar
Baumann S., Komissarov A., Gili M., Ruprecht V., Wieser S., Maurer S.P. 2020. A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs. Sci. Adv. 6, eaaz1588.
Fukuda Y., Pazyra-Murphy M.F., Silagi E.S., Tasdemir-Yilmaz O.E., Li Y., Rose L., Yeoh Z.C., Vangos N.E., Geffken E.A., Seo H.S., Adelmant G., Bird G.H., Walensky L.D., Marto J.A., Dhe-Paganon S., Segal R.A. 2021. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J. Cell Biol. 220, e202005051.
Article CAS PubMed Google Scholar
Reck-Peterson S.L., Redwine W.B., Vale R.D., Carter A.P. 2018. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Bi-ol. 19, 382–398.
Roberts A.J., Kon T., Knight P.J., Sutoh K., Burgess S.A. 2013. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726.
Article CAS PubMed PubMed Central Google Scholar
Urnavicius L., Lau C.K., Elshenawy M.M., Morales-Rios E., Motz C., Yildiz A., Carter A.P. 2018. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature. 554, 202–206.
Article CAS PubMed PubMed Central Google Scholar
King S.J., Brown C.L., Maier K.C., Quintyne N.J., Schroer T.A. 2003. Analysis of the dynein−dynactin interaction in vitro and in vivo. Mol. Biol. Cell. 14, 5089–5097.
Article CAS PubMed PubMed Central Google Scholar
Loening N.M., Saravanan S., Jespersen N.E., Jara K., Barbar E. 2020. Interplay of disorder and sequence specificity in the formation of stable dynein–dynactin complexes. Biophys. J. 119, 950–965.
Article CAS PubMed PubMed Central Google Scholar
Olenick M.A., Holzbaur E.L.F. 2019. Dynein activators and adaptors at a glance. J. Cell Sci. 132, jcs227132.
Article CAS PubMed PubMed Central Google Scholar
Qiu R., Zhang J., Xiang X. 2019. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J. Cell Biol. 218, 3630–3646.
Article CAS PubMed PubMed Central Google Scholar
Elshenawy M.M., Kusakci E., Volz S., Baumbach J., Bullock S.L., Yildiz A. 2020. Lis1 activates dynein motility by modulating its pairing with dynactin. Nat. Cell Biol. 22, 570–578.
Article CAS PubMed PubMed Central Google Scholar
Htet Z.M., Gillies J.P., Baker R.W., Leschziner A.E., DeSantis M.E., Reck-Peterson S.L. 2020. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat. Cell Biol. 22, 518–525.
Article CAS PubMed PubMed Central Google Scholar
Marzo M.G., Griswold J.M., Markus S.M. 2020. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat. Cell Biol. 22, 559–569.
Article CAS PubMed PubMed Central Google Scholar
Gillies J.P., Reimer J.M., Karasmanis E.P., Lahiri I., Htet Z.M., Leschziner A.E., Reck-Peterson S.L. 2022. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife. 11, e71229.
Comments (0)