Kopytova D.V., Krasnov A.N., Orlova A.V., Gurskiy D.Ya., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. 2010. ENY2: Couple, triple, more? Cell Cycle. 9, 479–481.
Article CAS PubMed Google Scholar
Galán A., Rodríguez-Navarro S. 2012. Sus1/ENY2: A multitasking protein in eukaryotic gene expression. Crit. Rev. Biochem. Mol. Biol. 47, 556–568.
Fischer T. 2002. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852.
Article CAS PubMed PubMed Central Google Scholar
Kurshakova M.M., Krasnov A.N., Kopytova D.V., Shidlovskii Y.V., Nikolenko J.V., Nabirochkina E.N., Spehner D., Schultz P., Tora L., Georgieva S.G. 2007. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J. 26, 4956–4965.
Article CAS PubMed PubMed Central Google Scholar
Lu Q., Tang X., Tian G., Wang F., Liu K., Nguyen V., Kohalmi S.E., Keller W.A., Tsang E.W., Harada J.J., Rothstein S.J., Cui Y. 2009. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: Components and anchoring nucleoporin: TREX-2 mRNA export complex. Plant J. 61, 259–270.
Jani D., Lutz S., Hurt E., Laskey R.A., Stewart M., Wickramasinghe V.O. 2012. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 40, 4562–4573.
Article CAS PubMed PubMed Central Google Scholar
Ellisdon A.M., Dimitrova L., Hurt E., Stewart M. 2012. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat. Struct. Mol. Biol. 19, 328–336.
Article CAS PubMed PubMed Central Google Scholar
Wickramasinghe V.O., Stewart M., Laskey R.A. 2010. GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus. 1, 393–396.
Article PubMed PubMed Central Google Scholar
Stewart M. 2019. Structure and function of the TREX‑2 complex. In Macromolecular Protein Complexes II: Structure and Function. Vol. 93. Subcellular Biochemistry. Harris J.R., Marles-Wright J., Eds. Cham: Springer, pp. 461–470.
Kopytova D., Popova V., Kurshakova M., Shidlovskii Y., Nabirochkina E., Brechalov A., Georgiev G., Georgieva S. 2016. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res. 44, 4920–4933.
Article CAS PubMed PubMed Central Google Scholar
Zhao Y., Lang G., Ito S., Bonnet J., Metzger E., Sawatsubashi S., Suzuki E., Le Guezennec X., Stunnenberg H.G., Krasnov A., Georgieva S.G., Schüle R., Takeyama K., Kato S., Tora L., Devys D. 2008. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell. 29, 92–101.
Article CAS PubMed Google Scholar
Pfab A., Bruckmann A., Nazet J., Merkl R., Grasser K.D. 2018. The adaptor protein ENY2 is a component of the deubiquitination module of the Arabidopsis SAGA transcriptional co-activator complex but not of the TREX-2 complex. J. Mol. Biol. 430, 1479–1494.
Article CAS PubMed Google Scholar
Atanassov B.S., Mohan R.D., Lan X., Kuang X., Lu Y., Lin K., McIvor E., Li W., Zhang Y., Florens L., Byrum S.D., Mackintosh S.G., Calhoun-Davis T., Koutelou E., Wang L., Tang D.G., Tackett A.J., Washburn M.P., Workman J.L., Dent S.Y. 2016. ATXN7L3 and ENY2 coordinate activity of multiple H2B deubiquitinases important for cellular proliferation and tumor growth. Mol. Cell. 62, 558–571.
Article CAS PubMed PubMed Central Google Scholar
Ellisdon A.M., Jani D., Köhler A., Hurt E., Stewart M. 2010. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J. Biol. Chem. 285, 3850–3856.
Article CAS PubMed Google Scholar
Galán A., García-Oliver E., Nuño-Cabanes C., Rubinstein L., Kupiec M., Rodríguez-Navarro S. 2018. The evolutionarily conserved factor Sus1/ENY2 plays a role in telomere length maintenance. Curr. Genet. 64, 635–644.
Kopytova D.V., Orlova A.V., Krasnov A.N., Gurskiy D.Ya., Nikolenko J.V., Nabirochkina E.N., Shidlovskii Y.V., Georgieva S.G. 2010. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 24, 86–96.
Article CAS PubMed PubMed Central Google Scholar
Gurskiy D., Orlova A., Vorobyeva N., Nabiroch-kina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. 2012. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res. 40, 10689–10700.
Article CAS PubMed PubMed Central Google Scholar
Khaleghpour K., Svitkin Y.V., Craig A.W., DeMaria C.T., Deo R.C., Burley S.K., Sonenberg N. 2001. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol. Cell. 7, 205–216.
Article CAS PubMed Google Scholar
Kozlov G., De Crescenzo G., Lim N.S., Siddiqui N., Fantus D., Kahvejian A., Trempe J.F., Elias D., Ekiel I., Sonenberg N., O’Connor-McCourt M., Gehring K. 2004. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 23, 272–281.
Article CAS PubMed Google Scholar
Khaleghpour K., Kahvejian A., De Crescenzo G., Roy G., Svitkin Y.V., Imataka H., O’Connor-McCourt M., Sonenberg N. 2001. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol. Cell. Biol. 21, 5200–5213.
Article CAS PubMed PubMed Central Google Scholar
Karim M.M., Svitkin Y.V., Kahvejian A., De Crescenzo G., Costa-Mattioli M., Sonenberg N. 2006. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc. Natl. Acad. Sci. U. S. A. 103, 9494–9499.
Article CAS PubMed PubMed Central Google Scholar
Ivanov A., Shuvalova E., Egorova T., Shuvalov A., Sokolova E., Bizyaev N., Shatsky I., Terenin I., Alkalaeva E. 2019. Polyadenylate-binding protein–interacting proteins PAIP1 and PAIP2 affect translation termination. J. Biol. Chem. 294, 8630–8639.
Article CAS PubMed PubMed Central Google Scholar
Polacek C., Friebe P., Harris E. 2009. Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J. Gen. Virol. 90, 687–692.
Article CAS PubMed Google Scholar
Onesto C., Berra E., Grépin R., Pagès G. 2004. Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J. Biol. Chem. 279, 34217–34226.
Article CAS PubMed Google Scholar
Gouyon F., Onesto C., Dalet V., Pages G., Leturque A., Brot-Laroche E. 2003. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: Role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2. Biochem. J. 375, 167–174.
Article CAS PubMed PubMed Central Google Scholar
Alvarez-Saavedra M., Antoun G., Yanagiya A., Oliva-Hernandez R., Cornejo-Palma D., Perez-Iratxeta C., Sonenberg N., Cheng H.-Y.M. 2011. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 20, 731–751.
Article CAS PubMed Google Scholar
Berlanga J.J., Baass A., Sonenberg N. 2006. Regulation of poly(A) binding protein function in translation: Characterization of the Paip2 homolog, Paip2B. RNA. 12, 1556–1568.
Article CAS PubMed PubMed Central Google Scholar
Roy G., Miron M., Khaleghpour K., Lasko P., Sonenberg N. 2004. The Drosophila poly(A) binding protein-interacting protein, dPaip2, is a novel effector of cell growth. Mol. Cell. Biol. 24, 1143–1154.
Comments (0)