Radial artery catheterization using a novel T-type ultrasound probe: a single-center randomized study

Waseem W, Sherief G, Abdulaziz AA, David FK. Radial artery diameter: a comprehensive systematic review of anatomy. J NeuroIntervent Surg. 2022;14:1274–8.

Article  Google Scholar 

Lee D, Kim JY, Kim HS, Lee KC, Lee SJ, Kwak HJ. Ultrasound evaluation of the radial artery for arterial catheterization in healthy anesthetized patients. J Clin Monit Comput. 2016;30:215–9.

Article  PubMed  Google Scholar 

Hongsong L, Xia C, Shuang S, Xiangdong X, Yingmin C. Correlation of a guidewire maximum insertion length with tortuous radial artery and the success rate during transradial coronary angiography. BMC Cardiovasc Disord. 2022;22:479.

Article  Google Scholar 

Ruengsakulrach P, Brooks M, Sinclair R, Hare D, Gordon I, Buxton B. Prevalence and prediction of calcification and plaques in radial artery grafts by ultrasound. J Thorac Cardiovasc Surg. 2001;122:398–9.

Article  CAS  PubMed  Google Scholar 

Sandker SC, Mecozzi G, van Buiten A, Mariani MA, Buikema H, Grandjean JG. Adventitial dissection: a simple and effective way to reduce radial artery spasm in coronary bypass surgery. Interact Cardiovasc Thorac Surg. 2013;17:784–9.

Article  PubMed  PubMed Central  Google Scholar 

Davis FM, Stewart JM. Radial artery cannulation. A prospective study in patients undergoing cardiothoracic surgery. Br J Anaesth. 1980;52:41–7.

Article  CAS  PubMed  Google Scholar 

Kim SY, Kim KN, Jeong MA, Lee BS, Lim HJ. Ultrasound-guided dynamic needle tip positioning technique for radial artery cannulation in elderly patients: a prospective randomized controlled study. PLoS ONE. 2021;16(5):e0251712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polderman KH, Girbes AR. Central venos catheter use part 1: mechanical complications. Intensive Care Med. 2002;28:1–17.

Article  PubMed  Google Scholar 

Osuda M, Edanaga M, Matsumoto T, Yamamoto A, Ihara S, Tanaka S, Yamakage M. Comparison of Mill Suss™-guided radial artery catheterization with the long-axis in-plane ultrasound-guided method under general anesthesia: a randomized controlled trial. J Anesth. 2020;34:464–7.

Article  PubMed  Google Scholar 

Schmidt SAJ, Lo S, Hollestein LM. Research techniques made simple: sample size estimation and power calculation. J Invest Dermatol. 2018;138(8):1678–82.

Article  CAS  PubMed  Google Scholar 

Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomized trial to minimize the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. 2016;25(3):1057–73.

Article  PubMed  Google Scholar 

Mehta CR, Pocock SJ. Adaptive increase in sample size when interim results are promising: a practical guide with examples. Statist Med. 2011;30:3267–84.

Article  Google Scholar 

Leigh W, Alice H, Marianne T, Laurent W. Ultrasound-guided radial artery cannulation in adult and paediatric populations: a systematic review and meta-analysis. Br J Anaesth. 2016;5:610–7.

Google Scholar 

Wang H-H, Wang J-J, Chen W-T. Ultrasound-guided short-axis out-of-plane vs long-axis in-plane technique for radial artery catheterization: an updated meta-analysis of randomized controlled trials. Eur Rev Med Pharmacol Sci. 2022;26:1914–22.

PubMed  Google Scholar 

Loon FHV, Scholten HJ, Korsten HH, Dierick-van Daele AT, Bouwman AR. The learning curve for ultrasound-guided peripheral intravenous cannulation in adults: a multicenter study. Med Ultrason. 2022;24:188–95.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif