Swaminathan, M., & Wang, E. S. (2020). Novel therapies for AML: a round-up for clinicians. Expert Rev. Clin. Pharmacol. 13(12), 1389–1400. https://doi.org/10.1080/17512433.2020.1850255.
Article CAS PubMed Google Scholar
Pelcovits, A., & Niroula, R. (2020). Acute Myeloid Leukemia: A Review. R I Med. J. 103(3), 38–40. 2013.
Dozzo, A., Galvin, A., Shin, J., Scalia, S., O’Driscoll, C. M., & Ryan, K. B. (2023). Modelling acute myeloid leukemia (AML): What’s new? A transition from the classical to the modern. Drug Deliv. and Transl. Res. 13(8), 2110–2141. https://doi.org/10.1007/s13346-022-01189-4.
Nix, N. & Price, A. W. (2019). Acute Myeloid Leukemia: an Ever-Changing Disease. JADPRO 10(8). https://doi.org/10.6004/jadpro.2019.10.8.12
Fleischmann, M., Schnetzke, U., Hochhaus, A., & Scholl, S. (2021). Management of Acute myeloid leukemia: current treatment options and future perspectives. Cancers. 13(22), 5722 https://doi.org/10.3390/cancers13225722.
Article CAS PubMed PubMed Central Google Scholar
Short, N. J., Rytting, M., & Cortés, J. E. (2018). Acute myeloid leukaemia. The Lancet. 392(10147), 593–606. https://doi.org/10.1016/s0140-6736(18)31041-9.
Kiyoi, H., Kawashima, N., & Ishikawa, Y. (2019). FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 111(2), 312–322. https://doi.org/10.1111/cas.14274.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., Wang, L., Zi, Y., Zhang, L., Guo, Y., Huang, Y. (2017). Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells. Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2017.01.042
Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025.
Article CAS PubMed PubMed Central Google Scholar
Elsayed, A. M., Elkomy, A., El-Kammar, R. I., Youssef G., Abdelhiee, E. Y., Abdo, W., Fadl, S. E., Soliman, A. M. & Aboubakr, M. (2021). Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci. Rep. 11(1). https://doi.org/10.1038/s41598-021-93196-7
Hsieh, M., Yang, J. B., Lin, R., Hsieh, Y., Yang, S., Chang, H., & Lu, K. (2020). Tomatidine represses invasion and migration of human osteosarcoma U2OS and HOS cells by suppression of presenilin 1 and C-RAF–MEK–ERK pathway. Molecules. 25(2), 326 https://doi.org/10.3390/molecules25020326.
Article CAS PubMed PubMed Central Google Scholar
Dey, P. K., Kundu, A., Chakraborty, H. J., Kar, B., Choi, W. S., Lee, B. M., Bhakta, T., Atanasov, A. G., & Kim, H. S. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. IJC, 145(7), 1731–1744. https://doi.org/10.1002/ijc.31965.
Cooperstone, J. L., Tober, K. L., Riedl, K. M., Teegarden, M. D., Cichon M. J., Francis D. M., Schwartz S. J. & Oberyszyn T. M. (2017) Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci. Rep. 7(1). https://doi.org/10.1038/s41598-017-05568-7.
Friedman, M. (2015). Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 63(13), 3323–3337. https://doi.org/10.1021/acs.jafc.5b00818.
Article CAS PubMed Google Scholar
Jeon, S., & Kim, M. M. (2019). Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chem. Biol. Interact. 313, 108826. https://doi.org/10.1016/j.cbi.2019.108826.
Article CAS PubMed Google Scholar
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70(2), 440–446. https://doi.org/10.1158/0008-5472.can-09-1947.
Article CAS PubMed Google Scholar
Yenigül, M., Akçok, İ., & Akçok, E. B. G. (2022). Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells. Mol. Biol. Rep. 49(8), 7521–7530. https://doi.org/10.1007/s11033-022-07560-5.
Article CAS PubMed Google Scholar
Tecik, M., & Adan, A. (2022). Therapeutic targeting of FLT3 in acute myeloid leukemia: current status and novel approaches. Onco Targets Ther. 15, 1449–1478. https://doi.org/10.2147/ott.s384293.
Article PubMed PubMed Central Google Scholar
Kumar, C. G. (2011). Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes & Cancer. 2(2), 95–107. https://doi.org/10.1177/1947601911408076.
Kihara, R., Nagata, Y., & Kiyoi, H., et al. (2014). Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 28(8), 1586–1595. https://doi.org/10.1038/leu.2014.55.
Article CAS PubMed Google Scholar
Heidel, F. H., Fischer, T., Arreba-Tutusaus, P., & Armstrong, S. A. (2015). Evolutionarily conserved signaling pathways: acting in the shadows of acute myelogenous leukemia’s genetic diversity. Clin Cancer Res. 21(2), 240–248. https://doi.org/10.1158/1078-0432.ccr-14-1436.
Article CAS PubMed Google Scholar
Reiter, K., Polzer, H., & Krupka, C., et al. (2017). Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 32(2), 313–322. https://doi.org/10.1038/leu.2017.257.
Article CAS PubMed PubMed Central Google Scholar
Huang, Y., Li, G., Hong, C. K., Zheng, X., Yu, H., Zhang, Y. (2021) Potential of steroidal alkaloids in Cancer: Perspective Insight into Structure–Activity Relationships. Front. Oncol. 11. https://doi.org/10.3389/fonc.2021.733369.
Jiang, Q. W., Chen, M., Cheng, K., Yu, P., Wei, X., & Shi, Z. (2015). Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev. 36(1), 119–143. https://doi.org/10.1002/med.21346.
Article CAS PubMed Google Scholar
Abadi, A. J., Mirzaei, S., & Mahabady, M. K., et al. (2021). Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res. 36(1), 189–213. https://doi.org/10.1002/ptr.7305.
Article CAS PubMed Google Scholar
Zou, J., Zhu, L., Jiang, X., Wang, Y., Wang, Y., Wang, X., & Chen, B. (2018). Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget. 9(13), 11268–11278. https://doi.org/10.18632/oncotarget.24109.
Article PubMed PubMed Central Google Scholar
Duarte, V. M., Han, E., Veena, M. S., Salvado, A., Suh, J. D., Liang, L., Faull, K. F., Srivatsan, E. S., & Wang, M. B. (2010). Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKΒ protein of the NFΚB pathway. Mol. Cancer Ther. 9(10), 2665–2675. https://doi.org/10.1158/1535-7163.mct-10-0064.
Article CAS PubMed PubMed Central Google Scholar
Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D’Alessandro, N. (2005). Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett. 224(1), 53–65. https://doi.org/10.1016/j.canlet.2004.10.051.
Article CAS PubMed Google Scholar
Sánchez, Y. G., Simón, G. P., Calviño, E., De Blas, E., & Aller, P. (2010). Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. JPET. 335(1), 114–123. https://doi.org/10.1124/jpet.110.168344.
Huang, H., Chen, X., Li, D., He, Y., Liu, Y., Du, Z., Zhang, K., DiPaola, R. S., Goodin, S., & Zheng, X. (2015). Combination of Α-Tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLOS ONE. 10(12), e0144293 https://doi.org/10.1371/journal.pone.0144293.
Article CAS PubMed PubMed Central Google Scholar
Rauf, A., Imran, M., Butt, M. S., Nadeem, M., Peters, D. G., & Mubarak, M. S. (2017). Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 58(9), 1428–1447. https://doi.org/10.1080/10408398.2016.1263597.
Comments (0)