Tomatidine, a Steroidal Alkaloid, Synergizes with Cisplatin to Inhibit Cell Viability and Induce Cell Death Selectively on FLT3-ITD+ Acute Myeloid Leukemia Cells

Swaminathan, M., & Wang, E. S. (2020). Novel therapies for AML: a round-up for clinicians. Expert Rev. Clin. Pharmacol. 13(12), 1389–1400. https://doi.org/10.1080/17512433.2020.1850255.

Article  CAS  PubMed  Google Scholar 

Pelcovits, A., & Niroula, R. (2020). Acute Myeloid Leukemia: A Review. R I Med. J. 103(3), 38–40. 2013.

Google Scholar 

Dozzo, A., Galvin, A., Shin, J., Scalia, S., O’Driscoll, C. M., & Ryan, K. B. (2023). Modelling acute myeloid leukemia (AML): What’s new? A transition from the classical to the modern. Drug Deliv. and Transl. Res. 13(8), 2110–2141. https://doi.org/10.1007/s13346-022-01189-4.

Article  Google Scholar 

Nix, N. & Price, A. W. (2019). Acute Myeloid Leukemia: an Ever-Changing Disease. JADPRO 10(8). https://doi.org/10.6004/jadpro.2019.10.8.12

Fleischmann, M., Schnetzke, U., Hochhaus, A., & Scholl, S. (2021). Management of Acute myeloid leukemia: current treatment options and future perspectives. Cancers. 13(22), 5722 https://doi.org/10.3390/cancers13225722.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Short, N. J., Rytting, M., & Cortés, J. E. (2018). Acute myeloid leukaemia. The Lancet. 392(10147), 593–606. https://doi.org/10.1016/s0140-6736(18)31041-9.

Article  Google Scholar 

Kiyoi, H., Kawashima, N., & Ishikawa, Y. (2019). FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 111(2), 312–322. https://doi.org/10.1111/cas.14274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Wang, L., Zi, Y., Zhang, L., Guo, Y., Huang, Y. (2017). Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells. Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2017.01.042

Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsayed, A. M., Elkomy, A., El-Kammar, R. I., Youssef G., Abdelhiee, E. Y., Abdo, W., Fadl, S. E., Soliman, A. M. & Aboubakr, M. (2021). Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci. Rep. 11(1). https://doi.org/10.1038/s41598-021-93196-7

Hsieh, M., Yang, J. B., Lin, R., Hsieh, Y., Yang, S., Chang, H., & Lu, K. (2020). Tomatidine represses invasion and migration of human osteosarcoma U2OS and HOS cells by suppression of presenilin 1 and C-RAF–MEK–ERK pathway. Molecules. 25(2), 326 https://doi.org/10.3390/molecules25020326.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dey, P. K., Kundu, A., Chakraborty, H. J., Kar, B., Choi, W. S., Lee, B. M., Bhakta, T., Atanasov, A. G., & Kim, H. S. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. IJC, 145(7), 1731–1744. https://doi.org/10.1002/ijc.31965.

Article  CAS  Google Scholar 

Cooperstone, J. L., Tober, K. L., Riedl, K. M., Teegarden, M. D., Cichon M. J., Francis D. M., Schwartz S. J. & Oberyszyn T. M. (2017) Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci. Rep. 7(1). https://doi.org/10.1038/s41598-017-05568-7.

Friedman, M. (2015). Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 63(13), 3323–3337. https://doi.org/10.1021/acs.jafc.5b00818.

Article  CAS  PubMed  Google Scholar 

Jeon, S., & Kim, M. M. (2019). Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chem. Biol. Interact. 313, 108826. https://doi.org/10.1016/j.cbi.2019.108826.

Article  CAS  PubMed  Google Scholar 

Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70(2), 440–446. https://doi.org/10.1158/0008-5472.can-09-1947.

Article  CAS  PubMed  Google Scholar 

Yenigül, M., Akçok, İ., & Akçok, E. B. G. (2022). Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells. Mol. Biol. Rep. 49(8), 7521–7530. https://doi.org/10.1007/s11033-022-07560-5.

Article  CAS  PubMed  Google Scholar 

Tecik, M., & Adan, A. (2022). Therapeutic targeting of FLT3 in acute myeloid leukemia: current status and novel approaches. Onco Targets Ther. 15, 1449–1478. https://doi.org/10.2147/ott.s384293.

Article  PubMed  PubMed Central  Google Scholar 

Kumar, C. G. (2011). Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes & Cancer. 2(2), 95–107. https://doi.org/10.1177/1947601911408076.

Article  CAS  Google Scholar 

Kihara, R., Nagata, Y., & Kiyoi, H., et al. (2014). Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 28(8), 1586–1595. https://doi.org/10.1038/leu.2014.55.

Article  CAS  PubMed  Google Scholar 

Heidel, F. H., Fischer, T., Arreba-Tutusaus, P., & Armstrong, S. A. (2015). Evolutionarily conserved signaling pathways: acting in the shadows of acute myelogenous leukemia’s genetic diversity. Clin Cancer Res. 21(2), 240–248. https://doi.org/10.1158/1078-0432.ccr-14-1436.

Article  CAS  PubMed  Google Scholar 

Reiter, K., Polzer, H., & Krupka, C., et al. (2017). Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 32(2), 313–322. https://doi.org/10.1038/leu.2017.257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y., Li, G., Hong, C. K., Zheng, X., Yu, H., Zhang, Y. (2021) Potential of steroidal alkaloids in Cancer: Perspective Insight into Structure–Activity Relationships. Front. Oncol. 11. https://doi.org/10.3389/fonc.2021.733369.

Jiang, Q. W., Chen, M., Cheng, K., Yu, P., Wei, X., & Shi, Z. (2015). Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev. 36(1), 119–143. https://doi.org/10.1002/med.21346.

Article  CAS  PubMed  Google Scholar 

Abadi, A. J., Mirzaei, S., & Mahabady, M. K., et al. (2021). Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res. 36(1), 189–213. https://doi.org/10.1002/ptr.7305.

Article  CAS  PubMed  Google Scholar 

Zou, J., Zhu, L., Jiang, X., Wang, Y., Wang, Y., Wang, X., & Chen, B. (2018). Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget. 9(13), 11268–11278. https://doi.org/10.18632/oncotarget.24109.

Article  PubMed  PubMed Central  Google Scholar 

Duarte, V. M., Han, E., Veena, M. S., Salvado, A., Suh, J. D., Liang, L., Faull, K. F., Srivatsan, E. S., & Wang, M. B. (2010). Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKΒ protein of the NFΚB pathway. Mol. Cancer Ther. 9(10), 2665–2675. https://doi.org/10.1158/1535-7163.mct-10-0064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D’Alessandro, N. (2005). Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett. 224(1), 53–65. https://doi.org/10.1016/j.canlet.2004.10.051.

Article  CAS  PubMed  Google Scholar 

Sánchez, Y. G., Simón, G. P., Calviño, E., De Blas, E., & Aller, P. (2010). Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. JPET. 335(1), 114–123. https://doi.org/10.1124/jpet.110.168344.

Article  CAS  Google Scholar 

Huang, H., Chen, X., Li, D., He, Y., Liu, Y., Du, Z., Zhang, K., DiPaola, R. S., Goodin, S., & Zheng, X. (2015). Combination of Α-Tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLOS ONE. 10(12), e0144293 https://doi.org/10.1371/journal.pone.0144293.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rauf, A., Imran, M., Butt, M. S., Nadeem, M., Peters, D. G., & Mubarak, M. S. (2017). Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 58(9), 1428–1447. https://doi.org/10.1080/10408398.2016.1263597.

Article  PubMed 

Comments (0)

No login
gif