Aryal, S., Longo, F., & Klann, E. (2021). Genetic removal of p70 S6K1 corrects coding sequence length-dependent alterations in mRNA translation in fragile X syndrome mice. Proceedings of the National Academy of Sciences of the United States of America, 118(18), e2001681118. https://doi.org/10.1073/pnas.2001681118
Article CAS PubMed PubMed Central Google Scholar
Bassetti, D., Luhmann, H. J., & Kirischuk, S. (2021). Effects of mutations in TSC genes on neurodevelopment and synaptic transmission. International Journal of Molecular Sciences, 22(14), 7273. https://doi.org/10.3390/ijms22147273
Article CAS PubMed PubMed Central Google Scholar
Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: A new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 10(11), 868–880. https://doi.org/10.1038/nrd3531
Article CAS PubMed Google Scholar
Bhattacharya, A., Mamcarz, M., Mullins, C., Choudhury, A., Boyle, R. G., Smith, D. G., Walker, D. W., & Klann, E. (2016). Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile X syndrome mice. Neuropsychopharmacology, 41(8), 1991–2000. https://doi.org/10.1038/npp.2015.369
Article CAS PubMed PubMed Central Google Scholar
Bombardieri, R., Pinci, M., Moavero, R., Cerminara, C., & Curatolo, P. (2010). Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. European Journal of Paediatric Neurology, 14(2), 146–149. https://doi.org/10.1016/j.ejpn.2009.03.003
Cavalheiro, S., da Costa, M. D. S., & Richtmann, R. (2021). Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: A case report. Child’s Nervous System, 37(12), 3897–3899. https://doi.org/10.1007/s00381-021-05218-4
Chi, O. Z., Wu, C.-C., Liu, X., Rah, K. H., Jacinto, E., & Weiss, H. R. (2015). Restoration of normal cerebral oxygen consumption with rapamycin treatment in a rat model of autism-tuberous sclerosis. Neuromolecular Medicine, 17(3), 305–313. https://doi.org/10.1007/s12017-015-8359-5
Article CAS PubMed PubMed Central Google Scholar
Curatolo, P., Scheper, M., Emberti Gialloreti, L., Specchio, N., & Aronica, E. (2023). Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World Journal of Pediatrics. https://doi.org/10.1007/s12519-023-00762-2
Curatolo, P., Specchio, N., & Aronica, E. (2022). Advances in the genetics and neuropathology of tuberous sclerosis complex: Edging closer to targeted therapy. The Lancet Neurology, 21(9), 843–856. https://doi.org/10.1016/S1474-4422(22)00213-7
Article CAS PubMed Google Scholar
Czapski, G. A., Babiec, L., Jęśko, H., Gąssowska-Dobrowolska, M., Cieślik, M., Matuszewska, M., Frontczak-Baniewicz, M., Zajdel, K., & Adamczyk, A. (2021). Synaptic alterations in a transgenic model of tuberous sclerosis complex: Relevance to autism spectrum disorders. International Journal of Molecular Sciences, 22(18), 10058. https://doi.org/10.3390/ijms221810058
Article CAS PubMed PubMed Central Google Scholar
de Vries, P. J. (2010). Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics, 7(3), 275–282. https://doi.org/10.1016/j.nurt.2010.05.001
Article PubMed PubMed Central Google Scholar
Ehninger, D., Han, S., Shilyansky, C., Zhou, Y., Li, W., Kwiatkowski, D. J., Ramesh, V., & Silva, A. J. (2008). Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nature Medicine, 14(8), 843–848. https://doi.org/10.1038/nm1788
Article CAS PubMed PubMed Central Google Scholar
Franz, D. N., Lawson, J. A., Yapici, Z., Ikeda, H., Polster, T., Nabbout, R., & French, J. A. (2021). Adjunctive everolimus therapy for tuberous sclerosis complex-associated refractory seizures: Results from the postextension phase of EXIST-3. Epilepsia, 62(12), 3029–3041. https://doi.org/10.1111/epi.17099
Article CAS PubMed Google Scholar
French, J. A., Lawson, J. A., Yapici, Z., Ikeda, H., Polster, T., Nabbout, R., & Franz, D. N. (2016). Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. The Lancet (London, England), 388(10056), 2153–2163. https://doi.org/10.1016/S0140-6736(16)31419-2
Article CAS PubMed Google Scholar
Ganesan, H., Balasubramanian, V., Iyer, M., Venugopal, A., Subramaniam, M. D., Cho, S.-G., & Vellingiri, B. (2019). mTOR signalling pathway: A root cause for idiopathic autism? BMB Reports, 52(7), 424–433. https://doi.org/10.5483/BMBRep.2019.52.7.137
Article CAS PubMed PubMed Central Google Scholar
Ganesh, S. K., & Subathra Devi, C. (2023). Molecular and therapeutic insights of rapamycin: A multi-faceted drug from Streptomyces hygroscopicus. Molecular Biology Reports, 50(4), 3815–3833. https://doi.org/10.1007/s11033-023-08283-x
Article CAS PubMed PubMed Central Google Scholar
Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D. B., & Sonenberg, N. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 493(7432), 371–377. https://doi.org/10.1038/nature11628
Article CAS PubMed Google Scholar
Habib, S. L. (2010). Tuberous sclerosis complex and DNA repair. Advances in Experimental Medicine and Biology, 685, 84–94. https://doi.org/10.1007/978-1-4419-6448-9_8
Article CAS PubMed Google Scholar
Harrington, L. S., Findlay, G. M., & Lamb, R. F. (2005). Restraining PI3K: MTOR signalling goes back to the membrane. Trends in Biochemical Sciences, 30(1), 35–42. https://doi.org/10.1016/j.tibs.2004.11.003
Article CAS PubMed Google Scholar
Hayashi, I., Aoki, Y., Ushikubo, H., Asano, D., Mori, A., Sakamoto, K., Nakahara, T., & Ishii, K. (2016). Protective effects of PF-4708671 against N-methyl-d-aspartic acid-induced retinal damage in rats. Fundamental & Clinical Pharmacology, 30(6), 529–536. https://doi.org/10.1111/fcp.12216
Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R., & Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews Disease Primers, 2, 16035. https://doi.org/10.1038/nrdp.2016.35
Hosking, S. L., Roff Hilton, E. J., Embleton, S. J., & Gupta, A. K. (2003). Epilepsy patients treated with vigabatrin exhibit reduced ocular blood flow. The British Journal of Ophthalmology, 87(1), 96–100. https://doi.org/10.1136/bjo.87.1.96
Article CAS PubMed PubMed Central Google Scholar
Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. The Biochemical Journal, 412(2), 179–190. https://doi.org/10.1042/BJ20080281
Article CAS PubMed Google Scholar
Kelleher, R. J., & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 135(3), 401–406. https://doi.org/10.1016/j.cell.2008.10.017
Article CAS PubMed Google Scholar
Koike-Kumagai, M., Fujimoto, M., & Wataya-Kaneda, M. (2022). Sirolimus relieves seizures and neuropsychiatric symptoms via changes of microglial polarity in tuberous sclerosis complex model mice. Neuropharmacology, 218, 109203. https://doi.org/10.1016/j.neuropharm.2022.109203
Article CAS PubMed Google Scholar
Krueger, D. A., Capal, J. K., Curatolo, P., Devinsky, O., Ess, K., Tzadok, M., … & TSCure Research Group. (2018). Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): Multicentre clinical experience. European Journal of Paediatric Neurology, 22(6), 1066–1073. https://doi.org/10.1016/j.ejpn.2018.06.007
Kútna, V., Uttl, L., Waltereit, R., Krištofiková, Z., Kaping, D., Petrásek, T., Hoschl, C., & Ovsepian, S. V. (2020). Tuberous sclerosis (tsc2+/-) model Eker rats reveals extensive neuronal loss with microglial invasion and vascular remodeling related to brain neoplasi
Comments (0)