Aebi, H. (1974). Catalase. Methods in Enzymatic Analysis, 2, 671–678.
Alharthy, K. M., Althurwi, H. N., Albaqami, F. F., Altharawi, A., Alzarea, S. I., Al-Abbasi, F. A., Nadeem, M. S., & Kazmi, I. (2023). Barbigerone potentially alleviates rotenone-activated Parkinson’s disease in a rodent model by reducing oxidative stress and neuroinflammatory cytokines. ACS Omega, 8(5), 4608–4615.
Article CAS PubMed PubMed Central Google Scholar
Bhardwaj, K., Rajawat, N. K., & Mathur, N. (2024). Development of Alpha-Synuclein protein model against therapeutic aspects of Parkinson’s disease. Indian Journal of Pharmacology, 56(1), 37–41. https://doi.org/10.4103/ijp.ijp_325_23
Article CAS PubMed PubMed Central Google Scholar
Breen, D. P., Halliday, G. M., & Lang, A. E. (2019). Gut–brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Movement Disorders, 34(3), 307–316.
Butkovich, L. M., Houser, M. C., & Tansey, M. G. (2018). α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Frontiers in Neuroscience, 12, 626. https://doi.org/10.3389/fnins.2018.00626
Article PubMed PubMed Central Google Scholar
Charles, M., & McEwen, J. (1977). Methods in enzymology (Vol. XVIIB, pp. 692–698). Academic.
Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism and Related Disorders, 17(10), 717–723.
Chonpathompikunlert, P., Boonruamkaew, P., Sukketsiri, W., Hutamekalin, P., & Sroyraya, M. (2018). The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complementary and Alternative Medicine, 18, 1–12.
Clairembault, T., Leclair-Visonneau, L., Coron, E., Bourreille, A., Le Dily, S., Vavasseur, F., Heymann, M. F., Neunlist, M., & Derkinderen, P. (2015). Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathologica Communications, 3, 1–9.
El-Ghaiesh, S. H., Bahr, H. I., Ibrahiem, A. T., Ghorab, D., Alomar, S. Y., Farag, N. E., & Zaitone, S. A. (2020). Metformin protects from rotenone-induced nigrostriatal neuronal death in adult mice by activating AMPK-FOXO3 signaling and mitigation of angiogenesis. Frontiers in Molecular Neuroscience, 13, 84.
Article CAS PubMed PubMed Central Google Scholar
Fikry, H., Saleh, L. A., & Abdel Gawad, S. (2022). Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s disease Model. CNS Neuroscience and Therapeutics, 28(5), 732–748.
Article CAS PubMed PubMed Central Google Scholar
Glajch, K. E., Fleming, S. M., Surmeier, D. J., & Osten, P. (2012). Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behavioural Brain Research, 230(2), 309–316.
Article CAS PubMed Google Scholar
Jha, S. K., & Kumar, P. (2017). An in silico study of naringenin-mediated neuroprotection in Parkinson’s disease. Asian Journal of Pharmaceutical and Clinical Research, 10(8), 171–176.
Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. (2016a). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 9730467. https://doi.org/10.1155/2016/9730467
Article CAS PubMed Google Scholar
Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. (2016b). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 9730467.
Klingelhoefer, L., & Reichmann, H. (2015). Pathogenesis of Parkinson disease—The gut–brain axis and environmental factors. Nature Reviews Neurology, 11(11), 625–636.
Article CAS PubMed Google Scholar
Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Article CAS PubMed Google Scholar
Lozanska, B., Georgieva, M., Miloshev, G., & Xenodochidis, C. (2022). Ageing and neurodegeneration—The role of neurotransmitters’ activity. International Journal of Bioautomation, 26(4), 325.
Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (pp. 12–258). McGraw-Hill.
Madiha, S., Batool, Z., Tabassum, S., Liaquat, L., Sadir, S., Shahzad, S., Naqvi, F., Saleem, S., Yousuf, S., Nawaz, A., & Haider, S. (2021). Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS ONE, 16(11), e0258928.
Article CAS PubMed PubMed Central Google Scholar
Mantovani, E., Zucchella, C., Argyriou, A. A., & Tamburin, S. (2023). Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: Current evidence and future perspectives. Expert Review of Neurotherapeutics, 23(1), 25–43.
Article CAS PubMed Google Scholar
Mao, Y. R., Jiang, L., Duan, Y. L., An, L. J., & Jiang, B. (2007). Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain. Environmental Toxicology and Pharmacology, 23(3), 314–318.
Article CAS PubMed Google Scholar
Monteiro, A. F. M., Viana, J. D. O., Nayarisseri, A., Zondegoumba, E. N., Mendonça Junior, F. J. B., Scotti, M. T., & Scotti, L. (2018). Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/7912765
Article PubMed PubMed Central Google Scholar
Mubashir, N., Fatima, R., & Naeem, S. (2020). Identification of novel phyto-chemicals from Ocimum basilicum for the treatment of Parkinson’s disease using in silico approach. Current Computer-Aided Drug Design, 16(4), 420–434.
Article CAS PubMed Google Scholar
Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090.
Article PubMed PubMed Central Google Scholar
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.
Article CAS PubMed Google Scholar
Ouzounoglou, E., Kalamatianos, D., Emmanouilidou, E., Xilouri, M., Stefanis, L., Vekrellis, K., & Manolakos, E. S. (2014). In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis. BMC Systems Biology, 8(1), 1–18.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.
Panday, S., Talreja, R., & Kavdia, M. (2020). The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvascular Research, 131, 104010.
Article CAS PubMed Google Scholar
Pathania, A., Kumar, R., & Sandhir, R. (2021). Hydroxytyrosol as anti-Parkinsonian molecule: Assessment using in silico and MPTP-induced Parkinson’s disease model. Biomedicine and Pharmacotherapy, 139, 111525.
Article CAS PubMed Google Scholar
Rahman, H., & Eswaraiah, M. (2008). Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice: A review. Pharmatutor Art, 1244, 1–12.
Rajawat, N. K. (2022). Neurotoxicity of N-Nitrosodimethylamine (NDMA) in Swiss albino mice and neuroprotection by nanocurcumin. Materials Today: Proceedings, 69, A30–A41.
Ramsay, R. R., & Tipton, K. F. (2017). Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 22(7), 1192.
Article PubMed PubMed Central Google Scholar
Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate production by probiotic bacteria. Nutrients, 3(1), 118–134.
Comments (0)