Inhibition of CRMP2 Phosphorylation Suppresses Microglia Activation in the Retina and Optic Nerve and Promotes Optic Nerve Regeneration After Optic Nerve Injury

Au, N. P. B., Kumar, G., Asthana, P., Gao, F., Kawaguchi, R., Chang, R. C. C., So, K. F., Hu, Y., Geschwind, D. H., Coppola, G., & Ma, C. H. E. (2022). Clinically relevant small-molecule promotes nerve repair and visual function recovery. Npj Regenerative Medicine, 7(1), 50. https://doi.org/10.1038/s41536-022-00233-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkelaar, M., Clarke, D., Wang, Y., Bray, G., & Aguayo, A. (1994). Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. The Journal of Neuroscience, 14(7), 4368–4374. https://doi.org/10.1523/JNEUROSCI.14-07-04368.1994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boczek, N. J., Ye, D., Johnson, E. K., Wang, W., Crotti, L., Tester, D. J., Dagradi, F., Mizusawa, Y., Torchio, M., Alders, M., Giudicessi, J. R., Wilde, A. A. M., Schwartz, P. J., Nerbonne, J. M., & Ackerman, M. J. (2014). Characterization of SEMA3A -encoded semaphorin as a naturally occurring K v 4.3 protein inhibitor and its contribution to brugada syndrome. Circulation Research, 115(4), 460–469. https://doi.org/10.1161/CIRCRESAHA.115.303657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brahma, M. M., Takahashi, K., Namekata, K., Harada, T., Goshima, Y., & Ohshima, T. (2022). Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes to Cells, 27(8), 526–536. https://doi.org/10.1111/gtc.12971

Article  CAS  PubMed  Google Scholar 

Cameron, E., Xia, X., Galvao, J., Ashouri, M., Kapiloff, M., & Goldberg, J. (2020). Optic nerve crush in mice to study retinal ganglion cell survival and regeneration. BIO-PROTOCOL. https://doi.org/10.21769/BioProtoc.3559

Article  PubMed  PubMed Central  Google Scholar 

Chang, R.C.-C., Chiu, K., Ho, Y.-S., & So, K.-F. (2009). Modulation of neuroimmune responses on Glia in the central nervous system: implication in therapeutic intervention against neuroinflammation. Cellular & Molecular Immunology, 6(5), 317–326. https://doi.org/10.1038/cmi.2009.42

Article  CAS  Google Scholar 

Coleman, B. R., Ratcliffe, R. H., Oguntayo, S. A., Shi, X., Doctor, B. P., Gordon, R. K., & Nambiar, M. P. (2008). [+]-Huperzine A treatment protects against N-methyl-d-aspartate-induced seizure/status epilepticus in rats. Chemico-Biological Interactions, 175(1–3), 387–395. https://doi.org/10.1016/j.cbi.2008.05.023

Article  CAS  PubMed  Google Scholar 

Friedli, M. J., & Inestrosa, N. C. (2021). Huperzine A and its neuroprotective molecular signaling in Alzheimer’s disease. Molecules, 26(21), 6531. https://doi.org/10.3390/molecules26216531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goshima, Y., Nakamura, F., Strittmatter, P., & Strittmatter, S. M. (1995). Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature, 376(6540), 509–514. https://doi.org/10.1038/376509a0

Article  CAS  PubMed  Google Scholar 

Guo, L., Choi, S., Bikkannavar, P., & Cordeiro, M. F. (2022). Microglia: Key players in retinal ageing and neurodegeneration. Frontiers in Cellular Neuroscience, 16, 804782. https://doi.org/10.3389/fncel.2022.804782

Article  PubMed  PubMed Central  Google Scholar 

Heuss, N. D., Pierson, M. J., Roehrich, H., McPherson, S. W., Gram, A. L., Li, L., & Gregerson, D. S. (2018). Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathologica Communications, 6(1), 66. https://doi.org/10.1186/s40478-018-0571-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaneda, M., Nagashima, M., Nunome, T., Muramatsu, T., Yamada, Y., Kubo, M., Muramoto, K., Matsukawa, T., Koriyama, Y., Sugitani, K., Vachkov, I. H., Mawatari, K., & Kato, S. (2008). Changes of phospho-growth-associated protein 43 (phospho-GAP43) in the zebrafish retina after optic nerve injury: A long-term observation. Neuroscience Research, 61(3), 281–288. https://doi.org/10.1016/j.neures.2008.03.008

Article  CAS  PubMed  Google Scholar 

Kettenmann, H., Hanisch, U.-K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91(2), 461–553. https://doi.org/10.1152/physrev.00011.2010

Article  CAS  PubMed  Google Scholar 

Kondo, S., Takahashi, K., Kinoshita, Y., Nagai, J., Wakatsuki, S., Araki, T., Goshima, Y., & Ohshima, T. (2019). Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Scientific Reports, 9(1), 7188. https://doi.org/10.1038/s41598-019-43658-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarov, N. E. (2013). Neuroanatomical Tract-Tracing Using Biotinylated Dextran Amine. In R. Zhou & L. Mei (Eds.), Neural Development (pp. 323–334). Humana Press.

Chapter  Google Scholar 

Levin, L. A., Clark, J. A., & Johns, L. K. (1996). Effect of lipid peroxidation inhibition on retinal ganglion cell death. Investigative Ophthalmology & Visual Science, 37(13), 2744–2749.

CAS  Google Scholar 

Nagai, J., Owada, K., Kitamura, Y., Goshima, Y., & Ohshima, T. (2016). Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Experimental Neurology, 277, 283–295. https://doi.org/10.1016/j.expneurol.2016.01.015

Article  CAS  PubMed  Google Scholar 

Nakamura, F., Ohshima, T., & Goshima, Y. (2020). Collapsin response mediator proteins: Their biological functions and pathophysiology in neuronal development and regeneration. Frontiers in Cellular Neuroscience, 14, 188. https://doi.org/10.3389/fncel.2020.00188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niwa, S., Nakamura, F., Tomabechi, Y., Aoki, M., Shigematsu, H., Matsumoto, T., Yamagata, A., Fukai, S., Hirokawa, N., Goshima, Y., Shirouzu, M., & Nitta, R. (2017). Structural basis for CRMP2-induced axonal microtubule formation. Scientific Reports, 7(1), 10681. https://doi.org/10.1038/s41598-017-11031-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, P. H. C., Brady, R. O., Martin, L. J., & Kulkarni, A. B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proceedings of the National Academy of Sciences, 93(20), 11173–11178. https://doi.org/10.1073/pnas.93.20.11173

Article  CAS  Google Scholar 

Quigley, H. A., Nickells, R. W., Kerrigan, L. A., Pease, M. E., Thibault, D. J., & Zack, D. J. (1995). Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investigative Ophthalmology & Visual Science, 36(5), 774–786.

CAS  Google Scholar 

Rathnasamy, G., Foulds, W. S., Ling, E.-A., & Kaur, C. (2019). Retinal microglia—A key player in healthy and diseased retina. Progress in Neurobiology, 173, 18–40. https://doi.org/10.1016/j.pneurobio.2018.05.006

Article  PubMed  Google Scholar 

Rosito, M., Sanchini, C., Gosti, G., Moreno, M., De Panfilis, S., Giubettini, M., Debellis, D., Catalano, F., Peruzzi, G., Marotta, R., Indrieri, A., De Leonibus, E., De Stefano, M. E., Ragozzino, D., Ruocco, G., Di Angelantonio, S., & Bartolini, F. (2023). Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays. Cell Reports, 42(2), 112104. https://doi.org/10.1016/j.celrep.2023.112104

Article  CAS  PubMed  Google Scholar 

Sánchez-Migallón, M. C., Valiente-Soriano, F. J., Nadal-Nicolás, F. M., Vidal-Sanz, M., & Agudo-Barriuso, M. (2016). Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: Delayed RGC loss With BDNF or a caspase 3 inhibitor. Investigative Ophthalmology & Visual Science, 57(1), 81–93. https://doi.org/10.1167/iovs.15-17841

Article  CAS  Google Scholar 

Sumi, T., Imasaki, T., Aoki, M., Sakai, N., Nitta, E., Shirouzu, M., & Nitta, R. (2018). Structural insights into the altering function of CRMP2 by phosphorylation. Cell Structure and Function, 43(1), 15–23. https://doi.org/10.1247/csf.17025

Article  PubMed  Google Scholar 

Tan, M., Cha, C., Ye, Y., Zhang, J., Li, S., Wu, F., Gong, S., & Guo, G. (2015). CRMP4 and CRMP2 Interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plasticity, 2015, 1–13. https://doi.org/10.1155/2015/947423

Article  Google Scholar 

Wang, B., Wang, H., Wei, Z., Song, Y., Zhang, L., & Chen, H. (2009). Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: An updated meta-analysis. Journal of Neural Transmission, 116(4), 457–465. https://doi.org/10.1007/s00702-009-0189-x

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif