Virus neutralization assays for human respiratory syncytial virus using airway organoids

Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ et al (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet (London England) 375:1545–1555. https://doi.org/10.1016/S0140-6736(10)60206-1

Article  PubMed  Google Scholar 

Openshaw PJM, Chiu C, Culley FJ, Johansson C (2017) Protective and harmful immunity to RSV infection. Annu Rev Immunol 35:501–532. https://doi.org/10.1146/annurev-immunol-051116-052206

Article  CAS  PubMed  Google Scholar 

McLellan JS, Ray WC, Peeples ME (2013) Structure and function of respiratory syncytial virus surface glycoproteins. Curr Top Microbiol Immunol 372:83–104. https://doi.org/10.1007/978-3-642-38919-1_4/COVER/

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Z, Xu L, Xie Z (2022) Receptors for respiratory syncytial virus infection and host factors regulating the life cycle of respiratory Syncytial Virus. Front Cell Infect Microbiol 12:858629. https://doi.org/10.3389/FCIMB.2022.858629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Battles MB, McLellan JS (2019) Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol 17:233. https://doi.org/10.1038/S41579-019-0149-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin MP, Yuan Y, Takas T, Domachowske JB, Madhi SA, Manzoni P et al (2020) Single-dose Nirsevimab for Prevention of RSV in Preterm infants. N Engl J Med 383:415–425. https://doi.org/10.1056/nejmoa1913556

Article  CAS  PubMed  Google Scholar 

Simões EAF, Madhi SA, Muller WJ, Atanasova V, Bosheva M, Cabañas F et al (2023) Efficacy of nirsevimab against respiratory syncytial virus lower respiratory tract infections in preterm and term infants, and pharmacokinetic extrapolation to infants with congenital heart disease and chronic lung disease: a pooled analysis of randomise. Lancet Child Adolesc Heal 7:180–189. https://doi.org/10.1016/S2352-4642(22)00321-2

Article  Google Scholar 

Connor EM (1998) Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102:531–537. https://doi.org/10.1542/PEDS.102.3.531

Article  Google Scholar 

Garegnani L, Styrmisdóttir L, Roson Rodriguez P, Escobar Liquitay CM, Esteban I, Franco JV (2021) Palivizumab for preventing severe respiratory syncytial virus (RSV) infection in children. Cochrane Database Syst Rev 11:CD013757. https://doi.org/10.1002/14651858.CD013757.pub2

Article  PubMed  Google Scholar 

Topalidou X, Kalergis AM, Papazisis G (2023) Respiratory Syncytial Virus vaccines: a review of the candidates and the approved vaccines. Pathog (Basel Switzerland) 12. https://doi.org/10.3390/pathogens12101259

Maas BM, Lommerse J, Plock N, Railkar RA, Cheung SYA, Caro L et al (2021) Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis. EBioMedicine 73:103651. https://doi.org/10.1016/J.EBIOM.2021.103651

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Swart RL (2022) Location matters in RSV protection. Cell Host Microbe 30:15–16. https://doi.org/10.1016/J.CHOM.2021.12.012

Article  PubMed  Google Scholar 

Raghunandan R, Higgins D, Hosken N (2021) RSV neutralization assays – use in immune response assessment. Vaccine 39:4591–4597. https://doi.org/10.1016/J.VACCINE.2021.06.016

Article  CAS  PubMed  Google Scholar 

McDonald JU, Rigsby P, Dougall T, Engelhardt OG (2018) Establishment of the first WHO International Standard for antiserum to respiratory Syncytial Virus: report of an international collaborative study. Vaccine 36:7641–7649. https://doi.org/10.1016/J.VACCINE.2018.10.087

Article  PubMed  PubMed Central  Google Scholar 

McDonald JU, Rigsby P, Atkinson E, Engelhardt OG (2020) Expansion of the 1st WHO international standard for antiserum to respiratory syncytial virus to include neutralisation titres against RSV subtype B: an international collaborative study. Vaccine 38:800–807. https://doi.org/10.1016/J.VACCINE.2019.10.095

Article  CAS  PubMed  Google Scholar 

Chen M, Chang JS, Nason M, Rangel D, Gall JG, Graham BS et al (2010) A flow cytometry based assay to assess RSV specific neutralizing antibody is reproducible, efficient and accurate. J Immunol Methods 362:180. https://doi.org/10.1016/J.JIM.2010.08.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shambaugh C, Azshirvani S, Yu L, Pache J, Lambert SL, Zuo F et al (2017) Development of a high-throughput respiratory syncytial virus fluorescent focus-based microneutralization assay. Clin Vaccine Immunol 24. https://doi.org/10.1128/CVI.00225-17

Fuentes S, Crim RL, Beeler J, Teng MN, Golding H, Khurana S (2013) Development of a simple, rapid, sensitive, high-throughput luciferase reporter based microneutralization test for measurement of virus neutralizing antibodies following respiratory Syncytial Virus vaccination and infection. Vaccine 31:3987. https://doi.org/10.1016/J.VACCINE.2013.05.088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Remmerden Y, Xu F, Van Eldik M, Heldens JGM, Huisman W, Widjojoatmodjo MN (2012) An improved respiratory syncytial virus neutralization assay based on the detection of green fluorescent protein expression and automated plaque counting. Virol J 9:253. https://doi.org/10.1186/1743-422X-9-253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zielinska E, Liu D, Wu HY, Quiroz J, Rappaport R, Yang DP (2005) Development of an improved microneutralization assay for respiratory syncytial virus by automated plaque counting using imaging analysis. Virol J 2:84. https://doi.org/10.1186/1743-422X-2-84

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldman SA, Hendry RM, Beeler JA (1999) Identification of a Linear heparin binding domain for human respiratory Syncytial Virus attachment glycoprotein G. J Virol 73:6610–6617. https://doi.org/10.1128/JVI.73.8.6610-6617.1999/ASSET/30D2FE37-6146-4B16-B51F-36D83E4B3DCD/ASSETS/GRAPHIC/JV0891764009.JPEG

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourgeois C, Bour JB, Lidholt K, Gauthray C, Pothier P (1998) Heparin-like structures on respiratory Syncytial Virus are involved in its infectivity in Vitro. J Virol 72:7221. https://doi.org/10.1128/JVI.72.9.7221-7227.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortjens B, Yasuda E, Yu X, Wagner K, Claassen YB, Bakker AQ et al (2017) Broadly reactive anti-respiratory Syncytial Virus G antibodies from exposed individuals effectively inhibit infection of primary Airway Epithelial cells. J Virol 91. https://doi.org/10.1128/jvi.02357-16

Ngwuta JO, Chen M, Modjarrad K, Joyce MG, Kanekiyo M, Kumar A et al (2015) Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci Transl Med 7:309ra162. https://doi.org/10.1126/SCITRANSLMED.AAC4241

Article  PubMed  PubMed Central  Google Scholar 

Teng MN, Whitehead SS, Collins PL (2001) Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology 289:283–296. https://doi.org/10.1006/viro.2001.1138

Article  CAS  PubMed  Google Scholar 

Ha B, Chirkova T, Boukhvalova MS, Sun HY, Walsh EE, Anderson CS et al Mutation of respiratory syncytial virus G protein’s CX3C motif attenuates infection in cotton rats and primary human airway epithelial cells. Vaccines 2019;7. https://doi.org/10.3390/vaccines7030069

Anderson CS, Chu CY, Wang Q, Mereness JA, Ren Y, Donlon K et al (2019) CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung. Pediatr Res 2019 875:87:862–867. https://doi.org/10.1038/s41390-019-0677-0

Article  CAS  Google Scholar 

Jeong K, Il, Piepenhagen PA, Kishko M, DiNapoli JM, Groppo RP, Zhang L et al (2015) CX3CR1 is expressed in differentiated human ciliated airway cells and co-localizes with respiratory syncytial virus on cilia in a G protein-dependent manner. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0130517

Johnson SM, McNally BA, Ioannidis I, Flano E, Teng MN, Oomens AG et al (2015) Respiratory Syncytial Virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLOS Pathog 11:e1005318. https://doi.org/10.1371/journal.ppat.1005318

Article  CAS  PubMed  PubMed Central  Google Scholar 

King T, Mejias A, Ramilo O, Peeples ME (2021) The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLOS Pathog 17:e1009469. https://doi.org/10.1371/journal.ppat.1009469

Comments (0)

No login
gif