Abrougui K, Gabsi K, Mercatoris B, Khemis C, Amami R, Chehaibi S (2019) Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res 190:202–208
Acquaah G (2007) Breeding self-pollinated species. Principles of plant genetics and breeding, 2nd edn. Wiley-Blackwell Publishing, Malden, MA, USA, pp 281–312
Aggarwal CC (2018) Neural networks and deep learning. Springer, Cham, p 457
Ahmad Y, Haider S, Iqbal J, Abbasi BA, Yaseen T, Mahmood T (2022) The mechanisms of genome editing technologies in crop plants. Principles and Practices of OMICS and Genome Editing for Crop Improvement. Springer International Publishing, Cham, pp 295–313
Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590
Article CAS PubMed PubMed Central Google Scholar
Akdemir D, Sanchez JI, Jannink JL (2015) Optimization of genomic selection training populations with a genetic algorithm. Genet Sel Evol 47:38. https://doi.org/10.1186/s12711-015-0116-6
Article PubMed PubMed Central Google Scholar
Akohoue F, Achigan-Dako EG, Sneller C, Van Deynze A, Sibiya J (2020) Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Mar’echal and Baudet]. PLoS One 15:e0234769
Article CAS PubMed PubMed Central Google Scholar
Alipanahi R, Safari L, Khanteymoori A (2023) CRISPR genome editing using computational approaches: a survey. Front Bioinform 2:1001131
Article PubMed PubMed Central Google Scholar
Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Russi L (2019) Pea genomic selection for Italian environments. BMC Genom 20:603
Araveeporn A (2021) The higher-order of adaptive lasso and elastic net methods for classification on high dimensional data. Mathematics 9:1091
Astivia OLO, Zumbo BD (2019) Heteroskedasticity in multiple regression analysis: what it is, how to detect it and how to solve it with applications in R and SPSS. Pract Assess Res Evaluation 24:1
Atanda SA, Olsen M, Burgueño J, Crossa J, Dzidzienyo D, Beyene Y, Robbins KR (2021) Maximizing efficiency of genomic selection in CIMMYT’s tropical maize breeding program. Theor App Genet 134:279–294
Azevedo CF, Nascimento M, Fontes VC, Silva FF, de Resende MDV, Cruz CD, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA (2019) Genomic land: software for genome-wide association studies and genomic prediction. Acta Sci Agron 41:e45361
Bao XR, Pan Y, Lee CM, Davis TH, Bao G (2021) Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nat Protoc 16:10–26
Article CAS PubMed Google Scholar
Battenfield SD, Guzm’an C, Gaynor RC, Singh RP, Pe˜na RJ, Dreisigacker S, Fritz AK, Poland JA (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9:plantgenome2016.01.0005. https://doi.org/10.3835/plantgenome2016.01.0005
Bhat JA, Deshmukh R, Zhao T, Patil G, Deokar A, Shinde S, Chaudhary J (2020) Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants. J Biotech 324:248–260
Bhatta M, Gutierrez L, Cammarota L, Cardozo F, Germán S, Gómez-Guerrero B, Pardo MF, Lanaro V, Sayas M, Castro AJ (2020) Multi-trait genomic prediction model increased the predictive ability for agronomic and malting quality traits in barley (Hordeum vulgare L) G3. Genes Genomes Genet 10:1113–1124
Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, Annicchiarico P (2017) Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE 12:e0169234
Article PubMed PubMed Central Google Scholar
Biddick M, Burns KC (2018) Phenotypic trait matching predicts the topology of an insular plant–bird pollination network. Integr Zool 13:339–347
Blondel M, Onogi A, Iwata H, Ueda N (2015) A ranking approach to genomic selection. PLoS ONE 10:e0128570
Article PubMed PubMed Central Google Scholar
Bolger AM, Poorter H, Dumschott K, Bolger ME, Arend D, Osorio S, Gundlach H, Mayer KF, Lange M, Scholz U, Usadel B (2019) Computational aspects underlying genome to phenome analysis in plants. Plant J 97:182–198
Article CAS PubMed PubMed Central Google Scholar
Bouvet JM, Makouanzi G, Cros D, Vigneron PH (2016) Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity 116:146–157
Article CAS PubMed Google Scholar
Brummer EC, Barber WT, Collie SM, Cox TS, Johnson R, Murray SC, Olsen RT, Pratt RC, Thro AM (2011) Plant breeding for harmony between agriculture and the environment. Front Ecol Environ 9:561–568
Budhlakoti, M, Mishra, DCM, Rai, A (2019) R package MTGS: genomic selection using multiple traits https://CRANR-projectorg/package=MTGS
Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F (2013) BreedVision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830–2847
Article PubMed PubMed Central Google Scholar
Callaway E (2020) ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588:203–204
Article CAS PubMed Google Scholar
Cao Q, Ma J, Chen CH, Xu H, Chen Z, Li W, Liu XS (2017) CRISPR-FOCUS: a web server for designing focused CRISPR screening experiments. PLoS ONE 12:e0184281
Article PubMed PubMed Central Google Scholar
Charmet G, Tran LG, Auzanneau J, Rincent R, Bouchet S (2020) BWGS: a R package for genomic selection and its application to a wheat breeding programme. PLoS ONE 15:e0222733
Article CAS PubMed PubMed Central Google Scholar
Chien LC (2020) A rank-based normalization method with the fully adjusted full-stage procedure in genetic association studies. PLoS ONE 15:e0233847
Article CAS PubMed PubMed Central Google Scholar
Chuai G, Ma H, Yan J (2018) DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol 19:1–18
Clark LV, Dwiyanti MS, Anzoua KG, Brummer JE, Ghimire BK, Głowacka K, Hall M, Heo K, Jin X, Lipka AE, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Long SP, Sacks EJ (2019) Genome-wide association and genomic prediction for biomass yield in a genetically diverse Miscanthus sinensis germplasm panel phenotyped at five locations in Asia and North America. Glob Change Biol Bioenergy 11:988–1007
Crossa J, de los Campos G, Maccaferri M, Tuberosa R, Burgueño J, Pérez-Rodríguez P (2016) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56:2193–2209
Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, de los Campos G, Montesinos-López OA, Burgueño J, Roo Q, Crossa J, Montesinos-López O, Burgueño J (2016) Genomic prediction of genotype environment interaction kernel regression models. Plant Genome 9:1–20. https://doi.org/10.3835/plantgenome2016.03.0024
Cyplik A, Piaskowska D, Czembor P, Bocianowski J (2023) The use of weighted multiple linear regression to estimate QTL× QTL× QTL interaction effects of winter wheat (Triticum aestivum L.) doubled-haploid lines. J Appl Genet 64:679–693. https://doi.org/10.1007/s13353-023-00795-3
Article CAS PubMed PubMed Central Google Scholar
Danandeh Mehr A, Fathollahzadeh AN (2021) A gradient boosting tree approach for SPEI classification and prediction in Turkey. Hydrol Sci J 66:1653–1663
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385
Comments (0)