Arnold, F. H. Innovation by evolution: bringing new chemistry to life (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 58, 14420–14426 (2019).
Article CAS PubMed Google Scholar
Winter, G. Harnessing evolution to make medicines (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 58, 14438–14445 (2019).
Article CAS PubMed Google Scholar
Trudeau, D. L. & Tawfik, D. S. Protein engineers turned evolutionists-the quest for the optimal starting point. Curr. Opin. Biotechnol. 60, 46–52 (2019).
Article CAS PubMed Google Scholar
Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).
Article CAS PubMed Google Scholar
Arnold, F. H. The nature of chemical innovation: new enzymes by evolution. Q. Rev. Biophys. 48, 404–410 (2015).
Article CAS PubMed Google Scholar
Arnold, F. H. Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257 (2001).
Article CAS PubMed Google Scholar
Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).
Article PubMed PubMed Central Google Scholar
Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).
Goldsmith, M. et al. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng. Des. Sel. 30, 333–345 (2017).
Article CAS PubMed Google Scholar
Fleishman, S. J. & Baker, D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 149, 262–273 (2012).
Article CAS PubMed Google Scholar
Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 22, 74–82 (2013).
Article CAS PubMed Google Scholar
Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28, 678–683 (2019).
Article CAS PubMed PubMed Central Google Scholar
Khare, S. D. & Fleishman, S. J. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett. 587, 1147–1154 (2013).
Article CAS PubMed Google Scholar
Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19, 1817–1819 (2010).
Article CAS PubMed PubMed Central Google Scholar
Baek, M. & Baker, D. Deep learning and protein structure modeling. Nat. Methods 19, 13–14 (2022).
Article CAS PubMed Google Scholar
Pan, X. & Kortemme, T. Recent advances in de novo protein design: principles, methods, and applications. J. Biol. Chem. 296, 100558 (2021).
Article CAS PubMed PubMed Central Google Scholar
Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).
Article CAS PubMed PubMed Central Google Scholar
Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).
Article CAS PubMed Google Scholar
Kortemme, T. De novo protein design — from new structures to programmable functions. Cell 187, 526–544 (2024).
Article CAS PubMed Google Scholar
Yue, K. & Dill, K. A. Inverse protein folding problem: designing polymer sequences. Proc. Natl Acad. Sci. USA 89, 4163–4167 (1992).
Article CAS PubMed PubMed Central Google Scholar
Bowie, J. U., Lüthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).
Article CAS PubMed Google Scholar
Weinstein, J., Khersonsky, O. & Fleishman, S. J. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr. Opin. Struct. Biol. 63, 58–64 (2020).
Article CAS PubMed PubMed Central Google Scholar
Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).
Article CAS PubMed Google Scholar
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023). Applying diffusion models to backbone generation yields large de novo-designed proteins and assemblies. Available as a Colab notebook.
Article CAS PubMed PubMed Central Google Scholar
Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).
Article CAS PubMed Google Scholar
Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74–79 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022). Repertoires of miniprotein binders for 12 different antigens are designed based solely on the structure of the target antigen site.
Article CAS PubMed PubMed Central Google Scholar
Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).
Article CAS PubMed Google Scholar
Zhao, H. & Arnold, F. H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53 (1999).
Article CAS PubMed Google Scholar
Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).
Article CAS PubMed Google Scholar
Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).
Dill, K. A. Polymer principles and protein folding. Protein Sci. 8, 1166–1180 (1999).
Article CAS PubMed PubMed Central Google Scholar
Brocchieri, L. & Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390–3400 (2005).
Article CAS PubMed PubMed Central Google Scholar
Johansson, K. E. et al. Computational redesign of thioredoxin is hypersensitive toward minor conformational changes in the backbone template. J. Mol. Biol. 428, 4361–4377 (2016).
Article CAS PubMed PubMed Central Google Scholar
Cherny, I. et al. Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem. Biol. 8, 2394–2403 (2013).
Article CAS PubMed Google Scholar
Baran, D. et al. Principles for computational design of binding antibodies. Proc. Natl Acad. Sci. USA 114, 10900–10905 (2017).
Article CAS PubMed PubMed Central Google Scholar
Murphy, P. M., Bolduc, J. M., Gallaher, J. L., Stoddard, B. L. & Baker, D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl Acad. Sci. USA 106, 9215–9220 (2009).
Article CAS PubMed PubMed Central Google Scholar
Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem region of in
Comments (0)