Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils

Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heng, T. S. P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

Article  CAS  PubMed  Google Scholar 

Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

Article  CAS  PubMed  Google Scholar 

Huang, J. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity and functional multiplicity in the early stage of severe burn patients. Front. Immunol. 12, 792122 (2021).

Article  CAS  PubMed  Google Scholar 

Miyake, K. et al. Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils. Nat. Commun. 14, 2694 (2023).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wechsler, M. E. et al. Eosinophils in health and disease: a state-of-the-art review. Mayo Clin. Proc. 96, 2694–2707 (2021).

Article  CAS  PubMed  Google Scholar 

Gurtner, A. et al. Active eosinophils regulate host defence and immune responses in colitis. Nature 615, 151–157 (2023).

Article  ADS  CAS  PubMed  Google Scholar 

Shah, K., Ignacio, A., McCoy, K. D. & Harris, N. L. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. 13, 574–583 (2020).

Article  CAS  PubMed  Google Scholar 

Mao, H. et al. Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS ONE 8, e68143 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Knuplez, E. et al. Frontline science: superior mouse eosinophil depletion in vivo targeting transgenic Siglec-8 instead of endogenous Siglec-F: mechanisms and pitfalls. J. Leukoc. Biol. 108, 43–58 (2020).

Article  CAS  PubMed  Google Scholar 

Shamri, R. et al. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. FASEB J. 26, 2084–2093 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenberg, H. F. Eosinophil-derived neurotoxin (EDN/RNase 2) and the mouse eosinophil-associated RNases (mEars): expanding roles in promoting host defense. Int. J. Mol. Sci. 16, 15442–15455 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shum, E. Y., Walczak, E. M., Chang, C. & Christina Fan, H. in Single Molecule and Single Cell Sequencing. (ed. Suzuki, Y.) 63–79 (Springer, 2019).

Fan, H. C., Fu, G. K. & Fodor, S. P. A. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

Article  PubMed  Google Scholar 

Dent, L. A., Strath, M., Mellor, A. L. & Sanderson, C. J. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med. 172, 1425–1431 (1990).

Article  CAS  PubMed  Google Scholar 

Dyer, K. D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 181 4004–4009 (2008).

Wang, L. et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc. Natl Acad. Sci. USA 118, e2005590118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, W. et al. Single-cell RNA-sequencing in asthma research. Front. Immunol. 13, 988573 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong, L. et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 56, 444–458.e5 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e23 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, Y.-T. et al. Longitudinal single-cell transcriptomics reveals a role for Serpina3n-mediated resolution of inflammation in a mouse colitis model. Cell Mol. Gastroenterol. Hepatol. 12, 547–566 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui, A. et al. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.02.040 (2023).

Article  PubMed  Google Scholar 

Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520.e8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarzfischer, M. et al. TiO2 nanoparticles abrogate the protective effect of the Crohn’s disease-associated variation within the PTPN22 gene locus. Gut https://doi.org/10.1136/gutjnl-2021-325911 (2022).

Article  PubMed  Google Scholar 

Gao, C., Zhang, M. & Chen, L. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium. Curr. Genomics 21, 602–609 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayer, A. T. et al. A tissue atlas of ulcerative colitis revealing evidence of sex-dependent differences in disease-driving inflammatory cell types and resistance to TNF inhibitor therapy. Sci. Adv. 9, eadd1166 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lafzi, A. et al. Identifying spatial co-occurrence in healthy and inflamed tissues (ISCHIA). Mol. Syst. Biol. 20, 98–119 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 1–23 (2022).

ADS  Google Scholar 

Shi, H., Doench, J. G. & Chi, H. CRISPR screens for functional interrogation of immunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00802-4 (2022).

Article  PubMed  Google Scholar 

Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeung, A. T. Y. et al. A genome-wide knockout screen in human macrophages identified host factors modulating Salmonella infection. mBio 10, e02169–19 (2019).

Article  CAS  PubMed 

Comments (0)

No login
gif