Li, H., Wang, X., Li, X., Zeng, S. & Chen, G. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging. Chem. Mater. 32, 3365–3375 (2020).
Barton, J. B., Demro, J. C., Gasparian, G. & Lange, M. Performance of an Uncooled Camera Utilizing an SWIR InGaAs 256 × 256 FPA for Imaging in the 1.0 µm – 1.7 µm Spectral Band. Defense Public Release: Technical Report, ADA399438 (US Department of Defense, 1998).
Chinnathambi, S. & Shirahata, N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337–355 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
Owens, E. A., Henary, M., El Fakhri, G. & Choi, H. S. Tissue-specific near-infrared fluorescence imaging. Acc. Chem. Res. 49, 1731–1740 (2016).
Article CAS PubMed PubMed Central Google Scholar
Tian, C. & Burgess, K. Flavylium and silylrhodapolymethines In excitation multiplexing. ChemPhotoChem 5, 702–704 (2021).
Article CAS PubMed PubMed Central Google Scholar
Usama, S. M. & Burgess, K. Hows and whys of tumor-seeking dyes. Acc. Chem. Res. 54, 2121–2131 (2021).
Article CAS PubMed Google Scholar
Wang, R., Li, X. & Yoon, J. Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl. Mater. Interfaces 13, 19543–19571 (2021).
Article CAS PubMed Google Scholar
Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 17136–17143 (2021).
Kim, B., Kim, H., Kim, S. & Hwang, Y. R. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl. Microsc. 51, 9 (2021).
Article PubMed PubMed Central Google Scholar
Wen, H. & Bellotti, E. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: a comparison between InGaAs and HgCdTe. J. Appl. Phys. 119, 205702 (2016).
Vittadello, L. et al. NIR–to–NIR Imaging: extended excitation up to 2.2 um using harmonic nanoparticles with a Tunable hIGh EneRgy (TIGER) widefield microscope. Nanomaterials 11, 3193 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sordillo, D. C., Sordillo, L. A., Sordillo, P. P., Shi, L. & Alfano, R. R. Short wavelength infrared optical windows for evaluation of benign and malignant tissues. J. Biomed. Opt. 22, 45002 (2017).
Carr, J. A. et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl Acad. Sci. USA 115, 9080 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
Shapiro, A. et al. Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime. Chem. Mater. 28, 6409–6416 (2016).
Shi, X. et al. Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window. Nano Res. 13, 2239–2245 (2020).
Li, Y. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11, 2621–2626 (2020).
Sun, C. et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J. Am. Chem. Soc. 141, 19221–19225 (2019).
Article CAS PubMed Google Scholar
Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
Khan, Z. & Sekar, N. Far-red to NIR emitting xanthene-based fluorophores. Dyes Pigm. 208, 110735 (2022).
Rathnamalala, C. S. L. et al. Donor–acceptor–donor NIR II emissive rhodindolizine dye synthesized by C–H bond functionalization. J. Org. Chem. 84, 13186–13193 (2019).
Article CAS PubMed Google Scholar
Chatterjee, S. et al. SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers. RSC Adv. 11, 27832–27836 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
Chatterjee, S. et al. Design and synthesis of rhodIndolizine dyes with improved stability and shortwave infrared emission up to 1250 nm. J. Org. Chem. 87, 11319 (2022).
Article CAS PubMed Google Scholar
Grimm, J. B., Brown, T. A., Tkachuk, A. N. & Lavis, L. D. General synthetic method for Si-fluoresceins and Si-rhodamines. ACS Cent. Sci. 3, 975–985 (2017).
Article CAS PubMed PubMed Central Google Scholar
Best, Q. A., Sattenapally, N., Dyer, D. J., Scott, C. N. & McCarroll, M. E. pH−Dependent Si-fluorescein hypochlorous acid fluorescent probe: spirocycle ring-opening and excess hypochlorous acid-induced chlorination. J. Amer. Chem. Soc. 135, 13365–13370 (2013).
Huang, Y. L., Walker, A. S. & Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137, 10767–10776 (2015).
Article CAS PubMed PubMed Central Google Scholar
Zheng, Q. et al. Rational design of fluorogenic and spontaneously blinking labels for super-resolution Imaging. ACS Cent. Sci. 5, 1602–1613 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kushida, Y., Nagano, T. & Hanaoka, K. Silicon-substituted xanthene dyes and their applications in bioimaging. Analyst 140, 685–695 (2015).
Article ADS CAS PubMed Google Scholar
Liu, M. H., Zhang, Z., Yang, Y. C. & Chan, Y. H. Polymethine-based semiconducting polymer dots with narrow-band emission and absorption/emission maxima at NIR-II for bioimaging. Angew. Chem. Int. Ed. 60, 983–989 (2021).
Yang, Y. et al. Counterion-paired bright heptamethine fluorophores with NIR-II excitation and emission enable multiplexed biomedical imaging. Angew. Chem. Int. Ed. 61, e202117436 (2022).
Article ADS CAS Google Scholar
Ando, N., Soutome, H. & Yamaguchi, S. Near-infrared fluorescein dyes containing a tricoordinate boron atom. Chem. Sci. 10, 7816–7821 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lei, Z. et al. Synthesis of sterically protected xanthene dyes with bulky groups at C-3′ and C-7′. J. Org. Chem. 80, 11538–11543 (2015).
Article ADS CAS PubMed Google Scholar
McNamara, L. E. et al. Indolizine-squaraines: NIR fluorescent materials with molecularly engineered Stokes shifts. Chem. Eur. J. 23, 12494–12501 (2017).
Article CAS PubMed Google Scholar
Ndaleh, D. et al. Shortwave infrared absorptive and emissive pentamethine-bridged indolizine cyanine dyes. J. Org. Chem. 86, 15376–15386 (2021).
Article CAS PubMed Google Scholar
Deng, F. & Xu, Z. Heteroatom-substituted rhodamine dyes: structure and spectroscopic properties. Chin. Chem. Lett. 30, 1667–1681 (2019).
Waggener, W. C. Absorbance of liquid water and deuterium oxide between 0.6 and 1.8 microns comparison of absorbance and effect of temperature. Anal. Chem. 30, 1569–1570 (1958).
Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).
Article ADS PubMed PubMed Central Google Scholar
Cosco, E. D. et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew. Chem. Int. Ed. 56, 13126–13129 (2017).
Semonin, O. E. et al. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 1, 2445–2450 (2010).
Comments (0)