Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).
Article CAS PubMed Google Scholar
Derdau, V. et al. The future of (radio)-labeled compounds in research and development within the life science industry. Angew. Chem. Int. Ed. 62, e202306019 (2023).
Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).
Article CAS PubMed Google Scholar
Alauddin, M. M. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging 2, 55–76 (2012).
Han, J. et al. Chemical aspects of human and environmental overload with fluorine. Chem. Rev. 121, 4678–4742 (2021).
Article CAS PubMed PubMed Central Google Scholar
Krauser, J. A. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J. Label. Compd. Radiopharm. 56, 441–446 (2013).
Jacobson, O., Kiesewetter, D. O. & Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chem. 26, 1–18 (2015).
Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry (Wiley, 2009).
Voges, R., Heys, J. R. & Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14 (John Wiley & Sons, 2009).
Dell’isola, A. et al. Synthesis of carbon-14–labelled peptides. J. Label. Compd. Radiopharm. 62, 713–717 (2019).
Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).
Article CAS PubMed Google Scholar
Lin, M. T. et al. A rapid and robust method for selective isotope labeling of proteins. Methods 55, 370–378 (2011).
Article CAS PubMed PubMed Central Google Scholar
Huang, C. & McConathy, J. Radiolabeled amino acids for oncologic imaging. J. Nucl. Med. 54, 1007–1010 (2013).
Article CAS PubMed Google Scholar
Galldiks, N. & Langen, K. J. Applications of PET imaging of neurological tumors with radiolabeled amino acids. Q. J. Nucl. Med. Mol. Imaging 59, 70–82 (2015).
Jager, P. L. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445 (2001).
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Article CAS PubMed Google Scholar
Derdau, V. New trends and applications in cyanation isotope chemistry. J. Label. Compd. Radiopharm. 61, 1012–1023 (2018).
Bragg, R. A., Sardana, M., Artelsmair, M. & Elmore, C. S. New trends and applications in carboxylation for isotope chemistry. J. Label. Compd. Radiopharm. 61, 934–948 (2018).
Augustyniak, W., Kański, R. & Kańska, M. Synthesis of carbon-14 labeled [1-14C]-, and [2-14C]-L-tyrosine. J. Label. Compd. Radiopharm. 44, 553–560 (2001).
Pająk, M., Pałka, K., Winnicka, E. & Kańska, M. The chemo-enzymatic synthesis of labeled L-amino acids and some of their derivatives. J. Radioanal. Nucl. Chem. 317, 643–666 (2018).
Article PubMed PubMed Central Google Scholar
Pekošak, A., Filp, U., Poot, A. J. & Windhorst, A. D. From carbon-11-labeled amino acids to peptides in positron emission tomography: the synthesis and clinical application. Mol. Imaging Biol. 20, 510–532 (2018).
Harding, J. R., Hughes, R. A., Kelly, N. M., Sutherland, A. & Willis, C. L. Syntheses of isotopically labelled L-α-amino acids with an asymmetric centre at C-3. J. Chem. Soc. Perkin Trans. 1 20, 3406–3416 (2000).
Song, F., Salter, R. & Weaner, L. E. A short synthesis of d-[1-14C]-serine of high enantiomeric purity. J. Label. Compd. Radiopharm. 58, 173–176 (2015).
Rees, D. O., Bushby, N., Harding, J. R., Song, C. & Willis, C. L. Synthesis of isotopically labelled amino acids. J. Label. Compd. Radiopharm. 50, 399–401 (2007).
Ling, J. R., Bronwen Cooper, P., Parker, S. J. & Armstead, I. P. Production and purification of mixed 14C-labelled peptides derived from plant biomass. J. Label. Compd. Radiopharm. 31, 417–426 (1992).
LeMaster, D. M. & Cronan, J. E. Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J. Biol. Chem. 257, 1224–1230 (1982).
Article CAS PubMed Google Scholar
Bsharat, O. et al. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO2. Nat. Chem. 14, 1367–1374 (2022).
Article CAS PubMed Google Scholar
Labiche, A., Malandain, A., Molins, M., Taran, F. & Audisio, D. Modern strategies for carbon isotope exchange. Angew. Chem. Int. Ed. 62, e202303535 (2023).
Destro, G. et al. Transition-metal-free carbon isotope exchange of phenyl acetic acids. Angew. Chem. Int. Ed. 59, 13490–13495 (2020).
Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).
Article CAS PubMed Google Scholar
Kong, D. et al. Fast carbon isotope exchange of carboxylic acids enabled by organic photoredox catalysis. J. Am. Chem. Soc. 143, 2200–2206 (2021).
Article CAS PubMed Google Scholar
Babin, V. et al. Photochemical strategy for carbon isotope exchange with CO2. ACS Catal. 11, 2968–2976 (2021).
Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122, 11507–11508 (2000).
Silverman, R. B. (ed.) in Organic Chemistry of Enzyme-Catalyzed Reactions 2nd edn, Ch. 8, 321–357 (Academic, 2002).
Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).
Article CAS PubMed Google Scholar
Pawelek, P. D. et al. The structure of l-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 19, 4204–4215 (2000).
Article CAS PubMed PubMed Central Google Scholar
Umhau, S. et al. The x-ray structure of d-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc. Natl Acad. Sci. USA 97, 12463–12468 (2000).
Comments (0)