Kang, Y. A. & Koh, W. J. (2016). Antibiotic treatment for nontuberculous mycobacterial lung disease. Expert Review of Respiratory Medicine, 10, 557–568.
Article CAS PubMed Google Scholar
Wang, X., Chen, S., Ren, H., Chen, J., Li, J., Wang, Y., Hua, Y., Wang, X. & Huang, N. (2019). HMGN2 regulates non-tuberculous mycobacteria survival via modulation of M1 macrophage polarization. Journal of Cellular and Molecular Medicine, 23, 7985–7998.
Article CAS PubMed PubMed Central Google Scholar
Vergne, I., Chua, J., Singh, S. B. & Deretic, V. (2004). Cell biology of mycobacterium tuberculosis phagosome. Annual Review of Cell and Developmental Biology, 20, 367–394.
Article CAS PubMed Google Scholar
Bhattacharyya, A., Pathak, S., Basak, C., Law, S., Kundu, M. & Basu, J. (2003). Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. Journal of Biological Chemistry, 278, 26517–26525.
Article CAS PubMed Google Scholar
Bermudez, L. E., Parker, A. & Petrofsky, M. (1999). Apoptosis of Mycobacterium avium-infected macrophages is mediated by both tumour necrosis factor (TNF) and Fas, and involves the activation of caspases. Clinical & Experimental Immunology, 116, 94–99.
Lee, K. I., Whang, J., Choi, H. G., Son, Y. J., Jeon, H. S., Back, Y. W., Park, H. S., Paik, S., Park, J. K., Choi, C. H. & Kim, H. J. (2016). Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Scientific Reports, 6, 37804.
Article ADS CAS PubMed PubMed Central Google Scholar
Lewis, M. S., Danelishvili, L., Rose, S. J., & Bermudez, L. E. (2019). MAV_4644 interaction with the host cathepsin Z protects mycobacterium avium subsp. hominissuis from rapid macrophage killing. Microorganisms, 7, 144.
Article CAS PubMed PubMed Central Google Scholar
Bermudez, L. E., Danelishvili, L., Babrack, L. & Pham, T. (2015). Evidence for genes associated with the ability of Mycobacterium avium subsp. hominissuis to escape apoptotic macrophages. Frontiers in Cellular and Infection Microbiology, 5, 63.
Article PubMed PubMed Central Google Scholar
Shin, A. R., Lee, K. S., Lee, K. I., Shim, T. S., Koh, W. J., Jeon, H. S., Son, Y. J., Shin, S. J. & Kim, H. J. (2013). Serodiagnostic potential of Mycobacterium avium MAV2054 and MAV5183 proteins. Clinical and Vaccine Immunology, 20, 295–301.
Article CAS PubMed PubMed Central Google Scholar
Gidon, A., Louet, C., Rost, L. M., Bruheim, P., & Flo, T. H. (2021). The tumor necrosis factor alpha and interleukin 6 auto-paracrine signaling loop controls mycobacterium avium infection via induction of IRF1/IRG1 in human primary macrophages. mBio, 12, e0212121.
Rodrigues, M. F., Barsante, M. M., Alves, C. C., Souza, M. A., Ferreira, A. P., Amarante-Mendes, G. P., & Teixeira, H. C. (2009). Apoptosis of macrophages during pulmonary Mycobacterium bovis infection: correlation with intracellular bacillary load and cytokine levels. Immunology, 128, e691–e699.
Article PubMed PubMed Central Google Scholar
Wojtas, B., Fijalkowska, B., Wlodarczyk, A., Schollenberger, A., Niemialtowski, M., Hamasur, B., Pawlowski, A. & Krzyzowska, M. (2011). Mannosylated lipoarabinomannan balances apoptosis and inflammatory state in mycobacteria-infected and uninfected bystander macrophages. Microbial Pathogenesis, 51, 9–21.
Article CAS PubMed Google Scholar
Lee, K. I., Choi, H. G., Son, Y. J., Whang, J., Kim, K., Jeon, H. S., Park, H. S., Back, Y. W., Choi, S., Kim, S. W., Choi, C. H., & Kim, H. J. (2016). Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4. Apoptosis, 21, 459–472.
Article CAS PubMed Google Scholar
Ding, S., Li, X., & Gao, J. (2021). Bioinformatics analysis of MAV—5183 protein of Mycobacterium avium tuberculosis. Chinese. Journal of Pathogen Biology, 16, 1153–1157.
Sánchez, A., Espinosa, P., García, T. & Mancilla, R. (2012). The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clinical and Developmental Immunology, 2012, 950503.
Article PubMed PubMed Central Google Scholar
Li, Y., Miltner, E., Wu, M., Petrofsky, M. & Bermudez, L. E. (2005). A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cellular Microbiology, 7, 539–548.
Article CAS PubMed Google Scholar
Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M. & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell and Developmental Biology, 98, 139–153.
Article CAS PubMed Google Scholar
Ganju, N. & Eastman, A. (2002). Bcl-X(L) and calyculin A prevent translocation of Bax to mitochondria during apoptosis. Biochemical and Biophysical Research Communications, 291, 1258–1264.
Article CAS PubMed Google Scholar
Sohn, H., Kim, J. S., Shin, S. J., Kim, K., Won, C. J., Kim, W. S., Min, K. N., Choi, H. G., Lee, J. C., Park, J. K., & Kim, H. J. (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathogens, 7, e1002435.
Article CAS PubMed PubMed Central Google Scholar
Kuai, S. G., Pei, H., Huang, L. H., Liu, Z. H., Mai, G. L., Liu, J. & Cui, Z. L. (2013). [Cell death of THP-1 induced by puried Rv3671c protein of tuberculosis and the detection of TNF-α and IL-1β in Mycobacterium tuberculosis]. Zhonghua Yu Fang Yi Xue Za Zhi 47, 444–447.
Denis, M.(1991). Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. Journal of Leukocyte Biology, 49, 380–387.
Article ADS CAS PubMed Google Scholar
Zuo, X., Wang, L., Bao, Y. & Sun, J. (2020). The ESX-1 virulence factors downregulate miR-147-3p in mycobacterium marinum-infected macrophages. Infection and Immunity, 88, e00088–20.
Article CAS PubMed PubMed Central Google Scholar
Knight, V.(2022). Immunodeficiency and autoantibodies to cytokines. Journal of Applied Laboratory Medicine, 7, 151–164.
Al-Aska, A., Al-Anazi, A. R., Al-Subaei, S. S., Al-Hedaithy, M. A., Barry, M. A., Somily, A. M., Buba, F., Yusuf, U. & Al Anazi, N. A. (2011). CD4+ T-lymphopenia in HIV negative tuberculous patients at King Khalid University Hospital in Riyadh, Saudi Arabia. European Journal of Medical Research, 16, 285–288.
Article PubMed PubMed Central Google Scholar
Nalukwago, S., Lancioni, C. L., Oketcho, J. B., Canaday, D. H. E., Boom, W. H., Ojok, L. & Mayanja-Kizza, H. (2017). The effect of interrupted anti-retroviral treatment on the reconstitution of memory and naive T cells during tuberculosis treatment in HIV patients with active pulmonary tuberculosis. African Health Sciences, 17, 954–962.
Article PubMed PubMed Central Google Scholar
Zhang, S. Y., Li, X. B., Hou, S. G., Sun, Y., Shi, Y. R. & Lin, S. S. (2016). Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. International Journal of Molecular Medicine, 38, 291–299.
Article CAS PubMed Google Scholar
Han, X., Kou, J., Zheng, Y., Liu, Z., Jiang, Y., Gao, Z., Cong, L. & Yang, L. (2019). ROS generated by upconversion nanoparticle-mediated photodynamic therapy induces autophagy via PI3K/AKT/ mTOR signaling pathway in M1 peritoneal macrophage. Cellular Physiology and Biochemistry, 52, 1325–1338.
Article CAS PubMed Google Scholar
Kim, G. Y., Jeong, H., Yoon, H. Y., Yoo, H. M., Lee, J. Y., Park, S. H., & Lee, C. E. (2020). Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Reports, 53, 640–645.
Article CAS PubMed PubMed Central Google Scholar
Redza-Dutordoir, M. & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863, 2977–2992.
Article CAS PubMed Google Scholar
Subbian, S., Mehta, P. K., Cirillo, S. L., & Cirillo, J. D. (2007). The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species. BMC Microbiology, 7, 4.
Article PubMed PubMed Central Google Scholar
Yabaji, S. M., Mishra, A. K., Chatterjee, A., Dubey, R. K., Srivastava, K. & Srivastava, K. K. (2017). Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK. Biochemical and Biophysical Research Communications, 494, 433–439.
Article CAS PubMed Google Scholar
Yang, Y., Xu, P., He, P., Shi, F., Tang, Y., Guan, C., Zeng, H., Zhou, Y., Song, Q., Zhou, B., Jiang, S., Shao, C., Sun, J., Yang, Y., Wang, X., & Song, H. (2020). Mycobacterial PPE13 activates inflammasome by interacting with the NATCH and LRR domains of NLRP3. The Faseb Journal, 34, 12820–12833.
Article CAS PubMed Google Scholar
Wu, M. F., Shu, C. C., Wang, J. Y., Yan, B. S., Lai, H. C., Chiang, B. L., Wu, L. S., & Yu, C. J. (2019). NLRP3 inflammasome is attenuated in patients with Mycobacterium avium complex lung disease and correlated with decreased interleukin-1β response and host susceptibility. Scientific Reports, 9, 12534.
Comments (0)