Allaman, I., Bélanger, M., & Magistretti, P. J. (2011). Astrocyte-neuron metabolic relationships: For better and for worse. Trends in Neurosciences, 34(2), 76–87. https://doi.org/10.1016/j.tins.2010.12.001.
Article CAS PubMed Google Scholar
Cai, L., Gong, Q., Qi, L., Xu, T., Suo, Q., Li, X., et al. (2022). ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Communication and Signaling, 20(1), 1–23. https://doi.org/10.1186/s12964-022-00862-y.
Chi, H., Barry, S. P., Roth, R. J., Wu, J. J., Jones, E. A., Bennett, A. M., & Flavell, R. A. (2006). Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A, 103(7), 2274–2279. https://doi.org/10.1073/pnas.0510965103.
Article CAS PubMed PubMed Central Google Scholar
Choi, J. H., Jang, M., Lee, J., Il, Chung, W. S., & Cho, I. H. (2018). Neuroprotective effects of a traditional multi-herbal medicine kyung-ok-ko in an animal model of parkinson’s disease: Inhibition of mapks and nf-kb pathways and activation of keap1-nrf2 pathway. Frontiers in Pharmacology, 9(December), 1–15. https://doi.org/10.3389/fphar.2018.01444.
Colucci-D’Amato, L., Perrone-Capano, C., & Di Porzio, U. (2003). Chronic activation of ERK and neurodegenerative diseases. Bioessays, 25(11), 1085–1095. https://doi.org/10.1002/bies.10355.
Article CAS PubMed Google Scholar
Fang, J. Y., & Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncology, 6(5), 322–327. https://doi.org/10.1016/S1470-2045(05)70168-6.
Article CAS PubMed Google Scholar
Germann, U. A., Furey, B. F., Markland, W., Hoover, R. R., Aronov, A. M., Roix, J. J., et al. (2017). Targeting the MAPK signaling pathway in cancer: Promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Molecular Cancer Therapeutics, 16(11), 2351–2363. https://doi.org/10.1158/1535-7163.MCT-17-0456.
Article CAS PubMed Google Scholar
Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P. (2012). Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. Acs Chemical Neuroscience, 3(1), 50–68. https://doi.org/10.1021/cn200100h.
Article CAS PubMed Google Scholar
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020). ERK/MAPK signalling pathway and tumorigenesis (review). Exp Ther Med, 1997–2007. https://doi.org/10.3892/etm.2020.8454.
Hansson, E. (2010). Long-term pain, neuroinflammation and glial activation. Scand J Pain, 1(2), 67–72. https://doi.org/10.1016/j.sjpain.2010.01.002.
Hong, D. G., Lee, S., Kim, J., Yang, S., Lee, M., Ahn, J., et al. (2022). Anti-inflammatory and neuroprotective effects of Morin in an MPTP-Induced Parkinson’s Disease Model. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810578.
Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045.
Article CAS PubMed Google Scholar
Jo, J., Lee, D., Park, Y. H., Choi, H., Han, J., Park, D. H., et al. (2021). Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. European Journal of Medicinal Chemistry, 217, 113325. https://doi.org/10.1016/j.ejmech.2021.113325.
Article CAS PubMed Google Scholar
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta Proteins Proteom, 1754(1–2), 253–262. https://doi.org/10.1016/j.bbapap.2005.08.017.
Kempuraj, D., Thangavel, R., Natteru, P. A., Selvakumar, G. P., Saeed, D., Zahoor, H., et al. (2016). Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine, 1(1), 1003.
PubMed PubMed Central Google Scholar
Kirkley, K. S., Popichak, K. A., Hammond, S. L., Davies, C., Hunt, L., & Tjalkens, R. B. (2019). Genetic suppression of IKK2/NF-κB in astrocytes inhibits neuroinflammation and reduces neuronal loss in the MPTP-Probenecid model of Parkinson’s disease. Neurobiology of Diseases, 127(November 2018), 193–209. https://doi.org/10.1016/j.nbd.2019.02.020.
Koelblinger, P., Dornbierer, J., & Dummer, R. (2017). A review of binimetinib for the treatment of mutant cutaneous melanoma. Future Oncology, 13(20), 1–12. https://doi.org/10.2217/fon-2017-0170.
Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener, 9(1), 1–12. https://doi.org/10.1186/s40035-020-00221-2.
Latif, S., Jahangeer, M., Maknoon Razia, D., Ashiq, M., Ghaffar, A., Akram, M., et al. (2021). Dopamine in Parkinson’s disease. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2021.08.009.
Lee, Y., Lee, S., Chang, S. C., & Lee, J. (2019). Significant roles of neuroinflammation in Parkinson’s disease: Therapeutic targets for PD prevention. Archives of Pharmacal Research, 42(5), 416–425. https://doi.org/10.1007/s12272-019-01133-0.
Article CAS PubMed Google Scholar
Lee, S., Suh, Y. J., Lee, Y., Yang, S., Hong, D. G., Thirumalai, D., et al. (2021). Anti-inflammatory effects of the novel barbiturate derivative MHY2699 in an mptp‐induced mouse model of parkinson’s disease. Antioxidants, 10(11). https://doi.org/10.3390/antiox10111855.
Lee, S., Hong, D. G., Yang, S., Kim, J., Baek, M., Kim, S., et al. (2022). Anti-inflammatory effect of IKK‐Activated GSK‐3β inhibitory peptide prevented Nigrostriatal Neurodegeneration in the Rodent Model of Parkinson’s Disease. International Journal of Molecular Sciences, 23(2). https://doi.org/10.3390/ijms23020998.
Li, Q., & Barres, B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology. https://doi.org/10.1038/nri.2017.125.
Li, Y., Chen, N., Wu, C., Lu, Y., Gao, G., Duan, C., et al. (2020). Galectin-1 attenuates neurodegeneration in Parkinson’s disease model by modulating microglial MAPK/IκB/NFκB axis through its carbohydrate-recognition domain. Brain, Behavior, and Immunity, 83, 214–225. https://doi.org/10.1016/j.bbi.2019.10.015.
Article CAS PubMed Google Scholar
Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduct Target Ther, 2(April), https://doi.org/10.1038/sigtrans.2017.23.
Liu, B., Zhang, Y., Yang, Z., Liu, M., Zhang, C., Zhao, Y., & Song, C. (2021). ω-3 DPA protected neurons from Neuroinflammation by balancing Microglia M1/M2 polarizations through inhibiting NF-κB/MAPK p38 signaling and activating Neuron-BDNF-PI3K/AKT pathways. Marine Drugs, 19(11). https://doi.org/10.3390/md19110587.
Ma, X. L., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500–512. https://doi.org/10.1111/j.1745-7254.2005.00068.x.
Article CAS PubMed Google Scholar
Madhi, I., Kim, J. H., Shin, J. E., & Kim, Y. (2021). Ginsenoside re exhibits neuroprotective effects by inhibiting neuroinflammation via CAMK/MAPK/NF-κB signaling in microglia. Molecular Medicine Reports, 24(4), 1–10. https://doi.org/10.3892/mmr.2021.12337.
Marsili, L., Marconi, R., & Colosimo, C. (2017). Treatment Strategies in Early Parkinson’s Disease. Int Rev Neurobiol (1st ed., Vol. 132). Elsevier Inc. https://doi.org/10.1016/bs.irn.2017.01.002.
Mebratu, Y., & Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer? Cell Cycle, 8(8), 1168–1175.
Article CAS PubMed Google Scholar
Mishima, K., Inoue, K., & Hayashi, Y. (2002). Overexpression of extracellular-signal regulated kinases on oral squamous cell carcinoma. Oral Oncology, 38(5), 468–474. https://doi.org/10.1016/S1368-8375(01)00104-X.
Article CAS PubMed Google Scholar
Novak, M. L., & Koh, T. J. (2013). Macrophage phenotypes during tissue repair. Journal of Leukocyte Biology, 93(6). https://doi.org/10.1189/jlb.1012512.
Oeckinghaus, A., Hayden, M. S., & Ghosh, S. (2011). Crosstalk in NF-κB signaling pathways. Nature Immunology, 12(8), 695–708. https://doi.org/10.1038/ni.2065.
Article CAS PubMed Google Scholar
Ohori, M. (2008). ERK inhibitors as a potential new therapy for rheumatoid arthritis. Drug News & Perspectives, 21(5). https://doi.org/10.1358/DNP.2008.21.5.1219006.
Olah, M., Biber, K., Vinet, J., & Boddeke, W. G. M., H (2011). Microglia phenotype diversity. CNS Neurol Disord Drug Targets, 10(1). https://doi.org/10.2174/187152711794488575.
Orihuela, R., McPherson, C. A., & Harry, G. J. (2016). Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology. https://doi.org/10.1111/bph.13139.
Rai, S. N., Birla, H., Singh, S. S., Zahra, W., Patil, R. R., Jadhav, J. P., et al. (2017). Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Frontiers in Aging Neuroscience, 9(DEC), 1–14. https://doi.org/10.3389/fnagi.2017.00421.
Rai, S. N., Dilnashin, H., Birla, H., Singh, S. S., Zahra, W., Rathore, A. S., et al. (2019). The role of PI3K/Akt and ERK in Neurodegenerative disorders. Neurotoxicity Research, 35(3), 775–795. https://doi.org/10.1007/s12640-019-0003-y.
Article CAS PubMed Google Scholar
Shechter, R., Miller, O., Yovel, G., Rosenzweig, N., London, A., Ruckh, J., et al. (2013). Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by Remote Brain Choroid Plexus. Immunity, 38(3). https://doi.org/10.1016/j.immuni.2013.02.012.
Sugiura, R., Satoh, R., & Takasaki, T. (2021). Erk: A double-edged sword in cancer. Erk-dependent apoptosis as a potential therapeutic strategy for cancer. Cells, 10(10). https://doi.org/10.3390/cells10102509.
Tang, Y., & Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology. https://doi.org/10.1007/s12035-014-9070-5.
Article PubMed PubMed Central Google Scholar
Tran, K. A., Cheng, M. Y., Mitra, A., Ogawa, H., Shi, V. Y., Olney, L. P., et al. (2015). MEK inhibitors and their potential in the treatment of advanced melanoma: The advantages of combination therapy. Drug Design, Development and Therapy, 10, 43–52. https://doi.org/10.2147/DDDT.S93545.
Article PubMed PubMed Central Google Scholar
Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 124(8), 901–905. https://doi.org/10.1007/s00702-017-1686-y.
Comments (0)