Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274
Kozisek T, Hamann A, Samuelson L, Fudolig M, Pannier AK (2021) Comparison of promoter, DNA vector, and cationic carrier for efficient transfection of hMSCs from multiple donors and tissue sources. Mol Ther Nucleic Acids 26:81–93. https://doi.org/10.1016/j.omtn.2021.06.018
Article CAS PubMed PubMed Central Google Scholar
Zhan XS, El-Ashram S, Luo DZ, Luo HN, Wang BY, Chen SF, Bai YS, Chen ZS, Liu CY, Ji HQ (2019) A comparative study of biological characteristics and transcriptome profiles of mesenchymal stem cells from different canine tissues. Int J Mol Sci 20(6):1485. https://doi.org/10.3390/ijms20061485
Article CAS PubMed PubMed Central Google Scholar
Scarpone M, Kuebler D, Chambers A, De Filippo CM, Amatuzio M, Ichim TE, Patel AN, Caradonna E (2019) Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation. J Transl Med 17(1):10. https://doi.org/10.1186/s12967-018-1750-x
Article PubMed PubMed Central Google Scholar
Drela K, Stanaszek L, Nowakowski A, Kuczynska Z, Lukomska B (2019) Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int 2019:7012692. https://doi.org/10.1155/2019/7012692
Article CAS PubMed PubMed Central Google Scholar
Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, Kim SU (2012) Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant 21(8):1641–1650. https://doi.org/10.3727/096368912X637488
Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ (2012) Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 3:297. https://doi.org/10.3389/fimmu.2012.00297
Article CAS PubMed PubMed Central Google Scholar
Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214. https://doi.org/10.1016/j.scr.2011.01.001
Praveen Kumar L, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS (2019) The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 46:1–9. https://doi.org/10.1016/j.cytogfr.2019.04.002
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852. https://doi.org/10.3390/ijms18091852
Article CAS PubMed PubMed Central Google Scholar
Heo JS, Kim J (2018) Mesenchymal stem cell-derived exosomes: applications in cell-free therapy. Korean J Clin Lab Sci 50:391–398. https://doi.org/10.15324/kjcls.2018.50.4.391
Huňáková K, Hluchý M, Kuricová M, Ševčík K, Rosocha J, Ledecký V (2018) Role of mesenchymal stem cells—derived exosomes in osteoarthritis treatment. Folia Vet 62(4):19–23. https://doi.org/10.2478/fv-2018-0033
Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, Noël D (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8(5):1399–1410. https://doi.org/10.7150/thno.21072
Article CAS PubMed PubMed Central Google Scholar
Seo Y, Kim HS, Hong IS (2019) Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int 2019:5126156. https://doi.org/10.1155/2019/5126156
Article CAS PubMed PubMed Central Google Scholar
Gugliandolo A, Bramanti P, Mazzon E (2019) Mesenchymal stem cells: a potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int 3675627. https://doi.org/10.1155/2019/3675627
Cuascut FX, Hutton GJ (2019) Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 7(2):26. https://doi.org/10.3390/biomedicines7020026
Article CAS PubMed PubMed Central Google Scholar
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M (2019) Mesenchymal stromal cell derived extracellular vesicles reduce hypoxia-ischaemia induced perinatal brain injury. Front Physiol 10:282. https://doi.org/10.3389/fphys.2019.00282
Article PubMed PubMed Central Google Scholar
Drohomirecka A, Iwaszko A, Walski T, Pliszczak-Król A, Wąż G, Graczyk S, Gałecka K, Czerski A, Bujok J, Komorowska M (2018) Low-level light therapy reduces platelet destruction during extracorporeal circulation. Sci Rep 8(1):16963. https://doi.org/10.1038/s41598-018-35311-9
Article ADS CAS PubMed PubMed Central Google Scholar
Mosca RC, Ong AA, Albasha O, Bass K, Arany P (2019) Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach. Adv Skin Wound Care 32(4):157–167. https://doi.org/10.1097/01.ASW.0000553600.97572.d2
König A, Missalla S, Valesky EM, Bernd A, Kaufmann R, Kippenberger S, Zöller NN (2018) Effect of near-infrared photobiomodulation therapy in a cellular wound healing model. Photodermatol Photoimmunol Photomed 34(4):279–283. https://doi.org/10.1111/phpp.12390
Monici M, Cialdai F, Romano G, Fusi F, Egli M, Pezzatini S, Morbidelli L (2012) The role of physical factors in cell differentiation, tissue repair and regeneration. In: Davies J (ed) Tissue regeneration – from basic biology to clinical, IntechOpen, London, pp 13–34. https://www.intechopen.com/chapters/34630
Vignali L, Cialdai F, Monici M (2011) Effects of MLS laser on myoblast cell line C2C12. Energy for Health 7:12–18. https://ortholazer.com/wp-content/uploads/2021/04/2.OL-Clinical-Studies-Effects-of-MLS-Laser-on-Myoblast-Cell-Line-C2C12.pdf
Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22(5):849–860. https://doi.org/10.1634/stemcells.22-5-849
Article CAS PubMed Google Scholar
Penfornis P, Pochampally R (2011) Isolation and expansion of mesenchymal stem cells/multipotential stromal cells from human bone marrow. In: Vemuri M, Chase LG, Rao MS (eds) Mesenchymal stem cell assays and applications, 1st edn. Humana Press, New York, pp 11–21. https://doi.org/10.1007/978-1-60761-999-4
Ciuffreda MC, Malpasso G, Musarò P, Turco V, Gnecchi M (2016) Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. In: Gnecchi M (ed) Mesenchymal stem cells. Methods in molecular biology, 2nd edn. Human Press, New York, pp 149-158. https://doi.org/10.1007/978-1-4939-3584-0
Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12. https://doi.org/10.1186/1472-6750-5-12
Article CAS PubMed PubMed Central Google Scholar
Mussttaf RA, Jenkins DFL, Jha AN (2019) Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 95(2):120–143. https://doi.org/10.1080/09553002.2019.1524944
Article CAS PubMed Google Scholar
Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflammb 2014:625048. https://doi.org/10.1155/2014/625048
de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quant Electron 22(3):7000417. https://doi.org/10.1109/JSTQE.2016.2561201
Magrini TD, dos Santos NV, Milazzotto MP, Cerchiaro G, da Silva MH (2012) Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study. J Biomed Opt 17(10):101516. https://doi.org/10.1117/1.JBO.17.10.101516
Esmaeelinejad M, Bayat M, Darbandi H, Bayat M, Mosaffa N (2014) The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci 29(1):121–129. https://doi.org/10.1007/s10103-013-1289-2
Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Michalska M, Goralczyk B, Zalewski P, Newton JL, Gryko L, Zajac A, Rosc D (2013) Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol 64(3):387–391. https://www.jpp.krakow.pl/journal/archive/06_13/pdf/387_06_13_article.pdf
Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthetic Plast Surg 39(5):778–782. https://doi.org/10.1007/s00266-015-0524-6
Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194. https://doi.org/10.1007/s10103-015-1730-9
Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24(6):705–714. https://doi.org/10.1089/pho.2006.24.705
Article CAS PubMed Google Scholar
Mognato M, Squizzato F, Facchin F, Zaghetto L, Corti L (2004) Cell growth modulation of human cells irradiated in vitro with low-level laser therapy. Photomed Laser Surg 22(6):523–526. https://doi.org/10.1089/pho.2004.22.523
Comments (0)