The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding

Friedberg MK, Reddy S. Right ventricular failure in congenital heart disease. Curr Opin Pediatr. 2019;31:604–10.

Article  PubMed  PubMed Central  Google Scholar 

Gavazzoni M, Badano LP, Vizzardi E, Raddino R, Genovese D, Taramasso M, et al. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. European Hear J Cardiovasc Imaging. 2020;21:1013–21.

Article  Google Scholar 

Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald R, Hickey K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Circulation. 2018;138:2106–15.

Article  PubMed  Google Scholar 

Surkova E, Muraru D, Genovese D, Aruta P, Palermo C, Badano LP. Relative prognostic importance of left and right ventricular ejection fraction in patients with cardiac diseases. J Am Soc Echocardiog. 2019;32:1407-1415.e3.

Article  Google Scholar 

Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling. Circulation. 2013;128:388–400.

Article  PubMed  PubMed Central  Google Scholar 

Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: Part 2 of 2. Circulation. 2013;128:1021–30.

Article  PubMed  Google Scholar 

Friedberg MK, Redington AN. Right versus left ventricular failure. Circulation. 2014;129:1033–44.

Article  PubMed  Google Scholar 

Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension. Circ Res. 2014;115:176–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roche SL, Redington AN. Right ventricle. Circulation. 2013;127:314–6.

Article  PubMed  Google Scholar 

Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.

Article  PubMed  Google Scholar 

Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.

Article  PubMed  Google Scholar 

Noordegraaf AV, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.

Article  Google Scholar 

Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D22-33.

Article  PubMed  Google Scholar 

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2019;380:347–57.

Article  CAS  PubMed  Google Scholar 

McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New Engl J Med. 2019;381:1995–2008.

Article  CAS  PubMed  Google Scholar 

Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. Jacc Cardiovasc Imaging. 2021;14(6):1164–73. https://doi.org/10.1016/j.jcmg.2020.10.017

Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2019;140:1693–702.

Article  PubMed  Google Scholar 

Opingari E, Verma S, Connelly KA, Mazer CD, Teoh H, Quan A, et al. The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes CardioLink-6 trial. Nephrol Dial Transpl. 2020;35:895–7.

Article  CAS  Google Scholar 

Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol. 2020;129:238–46.

Article  CAS  PubMed  Google Scholar 

Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice. Hypertension. 2012;59:1170–8.

Article  CAS  PubMed  Google Scholar 

Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, et al. Experimental right ventricular hypertension induces regional β1‐integrin–mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J Am Heart Assoc. 2018;7(7):e007928. https://doi.org/10.1161/JAHA.117.007928

Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am J Resp Cell Mol. 2020;63:843–55.

Article  CAS  Google Scholar 

Borgdorff MAJ, Koop AMC, Bloks VW, Dickinson MG, Steendijk P, Sillje HHW, et al. Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol. 2015;79:244–53.

Article  CAS  PubMed  Google Scholar 

Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

Article  PubMed  Google Scholar 

Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Bioph Res Co. 2020;524:50–6.

Article  CAS  Google Scholar 

Connelly KA, Zhang Y, Visram A, Advani A, Batchu SN, Desjardins J-F, et al. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. Jacc Basic Transl Sci. 2019;4:27–37.

Article  PubMed  PubMed Central  Google Scholar 

Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.

Article  PubMed  Google Scholar 

Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.

Article  CAS  PubMed  Google Scholar 

Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2019;141:704–7.

Article  PubMed  Google Scholar 

Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020;142:1028–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2019;24:904–11.

Article  CAS  PubMed  Google Scholar 

Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2013;35:657–64.

Article  PubMed  PubMed Central  Google Scholar 

Coelho-Filho OR, Mitchell RN, Moreno H, Kwong R, Jerosch-Herold M. MRI based non-invasive detection of cardiomyocyte hypertrophy and cell-volume changes. J Cardiov Magn Reson. 2012;14:O10.

Article  Google Scholar 

Yamamura K, Yuen D, Hickey EJ, He X, Chaturvedi RR, Friedberg MK, et al. Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart. 2019;105:855.

Article  PubMed  Google Scholar 

Yamamura K, Yuen D, Hickey E, Chaturvedi R, Friedberg M, Wald R. Histological Quantification of right ventricular myocardial fibrosis and its impact on right ventricular reverse remodeling in adult patients with repaired Tetralogy of Fallot. J Am Coll Cardiol. 2018;71:A555.

Article  Google Scholar 

Comments (0)

No login
gif