Friedberg MK, Reddy S. Right ventricular failure in congenital heart disease. Curr Opin Pediatr. 2019;31:604–10.
Article PubMed PubMed Central Google Scholar
Gavazzoni M, Badano LP, Vizzardi E, Raddino R, Genovese D, Taramasso M, et al. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. European Hear J Cardiovasc Imaging. 2020;21:1013–21.
Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald R, Hickey K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Circulation. 2018;138:2106–15.
Surkova E, Muraru D, Genovese D, Aruta P, Palermo C, Badano LP. Relative prognostic importance of left and right ventricular ejection fraction in patients with cardiac diseases. J Am Soc Echocardiog. 2019;32:1407-1415.e3.
Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling. Circulation. 2013;128:388–400.
Article PubMed PubMed Central Google Scholar
Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: Part 2 of 2. Circulation. 2013;128:1021–30.
Friedberg MK, Redington AN. Right versus left ventricular failure. Circulation. 2014;129:1033–44.
Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension. Circ Res. 2014;115:176–88.
Article CAS PubMed PubMed Central Google Scholar
Roche SL, Redington AN. Right ventricle. Circulation. 2013;127:314–6.
Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.
Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.
Noordegraaf AV, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.
Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D22-33.
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2019;380:347–57.
Article CAS PubMed Google Scholar
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New Engl J Med. 2019;381:1995–2008.
Article CAS PubMed Google Scholar
Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. Jacc Cardiovasc Imaging. 2021;14(6):1164–73. https://doi.org/10.1016/j.jcmg.2020.10.017
Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2019;140:1693–702.
Opingari E, Verma S, Connelly KA, Mazer CD, Teoh H, Quan A, et al. The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes CardioLink-6 trial. Nephrol Dial Transpl. 2020;35:895–7.
Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol. 2020;129:238–46.
Article CAS PubMed Google Scholar
Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice. Hypertension. 2012;59:1170–8.
Article CAS PubMed Google Scholar
Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, et al. Experimental right ventricular hypertension induces regional β1‐integrin–mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J Am Heart Assoc. 2018;7(7):e007928. https://doi.org/10.1161/JAHA.117.007928
Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am J Resp Cell Mol. 2020;63:843–55.
Borgdorff MAJ, Koop AMC, Bloks VW, Dickinson MG, Steendijk P, Sillje HHW, et al. Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol. 2015;79:244–53.
Article CAS PubMed Google Scholar
Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.
Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Bioph Res Co. 2020;524:50–6.
Connelly KA, Zhang Y, Visram A, Advani A, Batchu SN, Desjardins J-F, et al. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. Jacc Basic Transl Sci. 2019;4:27–37.
Article PubMed PubMed Central Google Scholar
Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.
Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.
Article CAS PubMed Google Scholar
Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62.
Article CAS PubMed PubMed Central Google Scholar
Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2019;141:704–7.
Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020;142:1028–39.
Article CAS PubMed PubMed Central Google Scholar
Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2019;24:904–11.
Article CAS PubMed Google Scholar
Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2013;35:657–64.
Article PubMed PubMed Central Google Scholar
Coelho-Filho OR, Mitchell RN, Moreno H, Kwong R, Jerosch-Herold M. MRI based non-invasive detection of cardiomyocyte hypertrophy and cell-volume changes. J Cardiov Magn Reson. 2012;14:O10.
Yamamura K, Yuen D, Hickey EJ, He X, Chaturvedi RR, Friedberg MK, et al. Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart. 2019;105:855.
Yamamura K, Yuen D, Hickey E, Chaturvedi R, Friedberg M, Wald R. Histological Quantification of right ventricular myocardial fibrosis and its impact on right ventricular reverse remodeling in adult patients with repaired Tetralogy of Fallot. J Am Coll Cardiol. 2018;71:A555.
Comments (0)