Albihlal WS, Gerber AP (2018) Unconventional RNA-binding proteins: an uncharted zone in RNA biology. FEBS Lett 592:2917–2931. https://doi.org/10.1002/1873-3468.13161
Article CAS PubMed Google Scholar
Allu AD, Soja AM, Wu A, et al (2014) Salt stress and senescence: Identification of cross-talk regulatory components. J Exp Bot 65:. https://doi.org/10.1093/jxb/eru173
Arae T, Morita K, Imahori R et al (2019) Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2. Plant Cell Physiol 60:2015–2025. https://doi.org/10.1093/pcp/pcz089
Article CAS PubMed Google Scholar
Bailey-Serres J, Zhai J, Seki M (2020) The dynamic kaleidoscope of RNA biology in plants. Plant Physiol. 182
Bailey TL, Grant CE (2021) SEA: Simple Enrichment Analysis of motifs. bioRxiv
Barrett T, Wilhite SE, Ledoux P, et al (2013) NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids Res 41:. https://doi.org/10.1093/nar/gks1193
Bedre R, Mandadi K (2019) GenFam: A web application and database for gene family-based classification and functional enrichment analysis. Plant Direct 3:. https://doi.org/10.1002/pld3.191
Bhattacharjee A, Jain M (2013) Homeobox genes as potential candidates for crop improvement under abiotic stress. In: Plant Acclimation to Environmental Stress
Bringaud F, Stripecke R, Frech GC, et al (1997) Mitochondrial Glutamate Dehydrogenase from Leishmania tarentolae Is a Guide RNA-Binding Protein . Mol Cell Biol 17:. https://doi.org/10.1128/mcb.17.7.3915
Brown BA, Cloix C, Jiang GH, et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:. https://doi.org/10.1073/pnas.0507187102
Chang HC, Tsai MC, Wu SS, Chang IF (2019) Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Bot Stud 60:. https://doi.org/10.1186/s40529-019-0264-z
Chang P, Hsieh HY, Tu SL (2022) The U1 snRNP component RBP45d regulates temperature-responsive flowering in Arabidopsis. Plant Cell 34:834–851. https://doi.org/10.1093/plcell/koab273
Bin CQ, Wang WJ, Zhang Y et al (2022) Abscisic acid-induced cytoplasmic translocation of constitutive photomorphogenic 1 enhances reactive oxygen species accumulation through the HY5-ABI5 pathway to modulate seed germination. Plant Cell Environ 45:1474–1489. https://doi.org/10.1111/pce.14298
Chen LG, Gao Z, Zhao Z et al (2019) BZR1 Family Transcription Factors Function Redundantly and Indispensably in BR Signaling but Exhibit BRI1-Independent Function in Regulating Anther Development in Arabidopsis. Mol Plant 12:1408–1415. https://doi.org/10.1016/j.molp.2019.06.006
Article CAS PubMed Google Scholar
Chen YE, Ma J, Wu N et al (2018) The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiol Biochem 130:267–276. https://doi.org/10.1016/j.plaphy.2018.07.014
Article CAS PubMed Google Scholar
Chin CH, Chen SH, Wu HH, et al (2014) cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:. https://doi.org/10.1186/1752-0509-8-S4-S11
Das M, Haberer G, Panda A, et al (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol 171:. https://doi.org/10.1104/pp.15.01207
Díaz-Muñoz MD, Turner M (2018) Uncovering the role of RNA-binding proteins in gene expression in the immune system. Front. Immunol. 9
Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:. https://doi.org/10.1007/s00709-010-0142-8
Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. https://doi.org/10.1105/tpc.108.063958
Article CAS PubMed PubMed Central Google Scholar
Dro W (2011) Heterodimers of the Arabidopsis Transcription Factors bZIP1 and bZIP53 Reprogram Amino Acid Metabolism during Low Energy Stress. 23:381–395. https://doi.org/10.1105/tpc.110.075390
Foley SW, Gosai SJ, Wang D et al (2017) A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Dev Cell 41:204-220.e5. https://doi.org/10.1016/j.devcel.2017.03.018
Article CAS PubMed PubMed Central Google Scholar
Fu XD, Ares M (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15
Gangappa SN, Botto JF (2016) The Multifaceted Roles of HY5 in Plant Growth and Development. Mol Plant 9:1353–1365. https://doi.org/10.1016/j.molp.2016.07.002
Article CAS PubMed Google Scholar
Ge SX, Jung D, Jung D, Yao R (2020) ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:. https://doi.org/10.1093/bioinformatics/btz931
Han G, Lu C, Guo J, et al (2020) C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. Front. Plant Sci. 11
Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in arabidopsis. Plant Cell 26:4394–4408. https://doi.org/10.1105/tpc.114.130849
Article CAS PubMed PubMed Central Google Scholar
Jaiswal V, Kakkar M, Kumari P, et al (2022) Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 25:105026. https://doi.org/10.1016/j.isci.2022.105026
Jin H, Li M, Duan S et al (2016) Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiol 172:1720–1731. https://doi.org/10.1104/pp.16.00698
Article CAS PubMed PubMed Central Google Scholar
Joshi R, Paul M, Kumar A, Pandey D (2019) Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene 714:144004. https://doi.org/10.1016/j.gene.2019.144004
Article CAS PubMed Google Scholar
Khan SA, Li MZ, Wang SM, Yin HJ (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 19:. https://doi.org/10.3390/ijms19061634
Kim CY, Bove J, Assmann SM (2008) Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytol 180:57–70. https://doi.org/10.1111/j.1469-8137.2008.02557.x
Article CAS PubMed Google Scholar
Kim JM, To TK, Matsui A, et al (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3:. https://doi.org/10.1038/nplants.2017.97
Kim JY, Park SJ, Jang B et al (2007) Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451. https://doi.org/10.1111/j.1365-313X.2007.03057.x
Article CAS PubMed Google Scholar
Kim S, Kim S, Chang HR, et al (2021) The regulatory impact of RNA-binding proteins on microRNA targeting. Nat Commun 12:. https://doi.org/10.1038/s41467-021-25078-5
Kim Y, Gilmour SJ, Chao L et al (2020) Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Mol Plant 13:157–168. https://doi.org/10.1016/j.molp.2019.11.001
Article CAS PubMed Google Scholar
Krismer K, Bird MA, Varmeh S et al (2020) Resource Transite : A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression ll Transite : A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Change. Cell Rep 32:108064. https://doi.org/10.1016/j.celrep.2020.108064
Article CAS PubMed PubMed Central Google Scholar
Kupsch C, Ruwe H, Gusewski S et al (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24:4266–4280. https://doi.org/10.1105/tpc.112.103002
Article CAS PubMed PubMed Central Google Scholar
Lambermon MHL, Fu Y, Kirk DAW, et al (2002) UBA1 and UBA2, Two Proteins That Interact with UBP1, a Multifunctional Effector of Pre-mRNA Maturation in Plants. Mol Cell Biol 22:. https://doi.org/10.1128/mcb.22.12.4346-4357.2002
Le Roux C, Del Prete S, Boutet-Mercey S, et al (2014) The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 9:. https://doi.org/10.1371/journal.pone.0099343
Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:. https://doi.org/10.1111/tpj.12866
Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:. https://doi.org/10.1007/s00299-014-1636-1
Letunic I, Khedkar S, Bork P (2021) SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res 49:. https://doi.org/10.1093/nar/gkaa937
Li W, Pang S, Lu Z, Jin B (2020) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9:1–15. https://doi.org/10.3390/plants9111515
Liu Q, Harberd NP, Fu X (2016) SQUAMOSA Promoter Binding Protein-like Transcription Factors: Targets for Improving Cereal Grain Yield. Mol Plant 9:765–767. https://doi.org/10.1016/j.molp.2016.04.008
Article CAS PubMed Google Scholar
Lohani N, Singh MB, Bhalla PL (2022) Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BioDesign Res 2022:. https://doi.org/10.34133/2022/9819314
Mallory MJ, McClory SP, Chatrikhi R et al (2021) Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Res 48:5710–5719. https://doi.org/10.1093/NAR/GKAA295
Marondedze C, Thomas L, Gehring C, Lilley KS (2019) Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC Plant Biol 19:. https://doi.org/10.1186/s12870-019-1750-x
Molitor AM, Latrasse D, Zytnicki M et al (2016) The arabidopsis hnRNP-Q protein LIF2 and the PRC1 subunit LHP1 function in concert to regulate the transcription of stress-responsive genes. Plant Cell 28:2197–2211. https://doi.org/10.1105/tpc.16.00244
Article CAS PubMed PubMed Central Google Scholar
Mor A, Koh E, Weiner L, et al (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:. https://doi.org/10.1104/pp.114.236380
Morker KH, Roberts MR (2011) Light exerts multiple levels of influence on the Arabidopsis wound response. Plant, Cell Environ 34:. https://doi.org/10.1111/j.1365-3040.2011.02276.x
Muthusamy M, Kim JH, Kim JA, Lee SI (2021) Plant rna binding proteins as critical modulators in drought, high salinity, heat, and cold stress responses: An updated overview. Int J Mol Sci 22:. https://doi.org/10.3390/ijms22136731
Nguyen CC, Nakaminami K, Matsui A et al (2016) Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00853
Nguyen CC, Nakaminami K, Matsui A, et al (2017) Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signal Behav 12:. https://doi.org/10.1080/15592324.2017.1282591
Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, et al (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A 110:. https://doi.org/10.1073/pnas.1302265110
Nunez-Vazquez R, Desvoyes B, Gutierrez C (2022) Histone variants and modifications during abiotic stress response. Front Plant Sci 13:1–23. https://doi.org/10.3389/fpls.2022.984702
Okuzaki A, Rühle T, Leister D, Schmitz-Linneweber C (2021) The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. J Exp Bot 72:4904–4914. https://doi.org/10.1093/jxb/erab165
Article CAS PubMed Google Scholar
Pan C, Wu X, Markel K, et al (2021) CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants 7:. https://doi.org/10.1038/s41477-021-00953-7
Pandey N, Ranjan A, Pant P, et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:. https://doi.org/10.1186/1471-2164-14-216
Pedrotti L, Weiste C, Nägele T et al (2018) Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell 30:495–509. https://doi.org/10.1105/tpc.17.00414
Comments (0)