Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–30.
Article CAS PubMed Google Scholar
Levinthal C. Are there pathways for protein folding? J Chim Phys. 1968;65:44–45.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–89.
Article CAS PubMed PubMed Central Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Applying and improving AlphaFold at CASP14. Proteins. 2021;89:1711–21.
Article CAS PubMed PubMed Central Google Scholar
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021;50:D439–D44.
Article PubMed Central Google Scholar
Consortium TU. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022;51:D523–D31.
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, et al. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51:D488–D508.
Article CAS PubMed Google Scholar
Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics. 2013;29:2722–28.
Article CAS PubMed PubMed Central Google Scholar
Wilson CJ, Choy WY, Karttunen M. AlphaFold2: a role for disordered protein/region prediction? Int J Mol Sci. 2022;23:4591.
Article CAS PubMed PubMed Central Google Scholar
Guo H-B, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep. 2022;12:10696.
Article CAS PubMed PubMed Central Google Scholar
Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, et al. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol. 2022;29:1056–67.
Article CAS PubMed PubMed Central Google Scholar
Bludau I, Willems S, Zeng WF, Strauss MT, Hansen FM, Tanzer MC, et al. The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biol. 2022;20:e3001636.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins: Struct, Funct, Bioinforma. 2004;57:702–10.
Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2022:2021.10.04.463034.
Buel GR, Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure? Nat Struct Mol Biol. 2022;29:1–2.
Article CAS PubMed Google Scholar
Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, Maksimova ES, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS One. 2023;18:e0282689.
Article CAS PubMed PubMed Central Google Scholar
Keskin Karakoyun H, Yuksel SK, Amanoglu I, Naserikhojasteh L, Yesilyurt A, Yakicier C, et al. Evaluation of AlphaFold structure-based protein stability prediction on missense variations in cancer. Front Genet. 2023;14:1052383.
Article PubMed PubMed Central Google Scholar
Hekkelman ML, de Vries I, Joosten RP, Perrakis A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods. 2023;20:205–13.
Article CAS PubMed Google Scholar
Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun. 2022;13:1265.
Article CAS PubMed PubMed Central Google Scholar
Bryant P, Pozzati G, Zhu W, Shenoy A, Kundrotas P, Elofsson A. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat Commun. 2022;13:6028.
Article CAS PubMed PubMed Central Google Scholar
Drake ZC, Seffernick JT, Lindert S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling. Nat Commun. 2022;13:7846.
Article CAS PubMed PubMed Central Google Scholar
Bryant P. Deep learning for protein complex structure prediction. Curr Opin Struct Biol. 2023;79:102529.
Article CAS PubMed Google Scholar
Gao M, Nakajima An D, Parks JM, Skolnick J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun. 2022;13:1744.
Article CAS PubMed PubMed Central Google Scholar
Konc J, Janežič D. ProBiS-fold approach for annotation of human structures from the alphafold database with no corresponding structure in the PDB to discover new druggable binding sites. J Chem Inf Model. 2022;62:5821–29.
Article CAS PubMed Google Scholar
Ruffolo JA, Chu L-S, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun. 2023;14:2389.
Article CAS PubMed PubMed Central Google Scholar
Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep learning. Patterns. 2022;3:100406.
Article CAS PubMed Google Scholar
Yin R, Pierce BG Evaluation of AlphaFold Antibody-Antigen Modeling with Implications for Improving Predictive Accuracy. bioRxiv. 2023.
Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 2019;431:2197–212.
Article CAS PubMed PubMed Central Google Scholar
Iqbal S, Ge F, Li F, Akutsu T, Zheng Y, Gasser RB, et al. PROST: AlphaFold2-aware sequence-based predictor to estimate protein stability changes upon missense mutations. J Chem Inf Model. 2022;62:4270–82.
Article CAS PubMed Google Scholar
Cheng J, Novati G, Pan J, Bycroft C, Zemgulyte A, Applebaum T, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:eadg7492.
Article CAS PubMed Google Scholar
Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48:D835–d44.
Article CAS PubMed Google Scholar
Vacic V, Iakoucheva LM. Disease mutations in disordered regions-exception to the rule? Mol Biosyst. 2012;8:27–32.
Article CAS PubMed Google Scholar
Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez-Miranda LR, et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell. 2018;175:239–53.e17.
Article CAS PubMed Google Scholar
Pentony MM, Ward J, Jones DT. Computational resources for the prediction and analysis of native disorder in proteins. Methods Mol Biol. 2010;604:369–93.
Article CAS PubMed Google Scholar
Vacic V, Markwick PR, Oldfield CJ, Zhao X, Haynes C, Uversky VN, et al. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol. 2012;8:e1002709.
Article CAS PubMed PubMed Central Google Scholar
Mort M, Evani US, Krishnan VG, Kamati KK, Baenziger PH, Bagchi A, et al. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Hum Mutat. 2010;31:335–46.
Article PubMed PubMed Central Google Scholar
Zhou JB, Xiong Y, An K, Ye ZQ, Wu YD. IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nsSNVs) in intrinsically disordered regions. Bioinformatics. 2020;36:4977–83.
Article CAS PubMed PubMed Central Google Scholar
Ragonis-Bachar P, Landau M. Functional and pathological amyloid structures in the
Comments (0)