Knockdown of the Non-canonical Wnt Gene Prickle2 Leads to Cerebellar Purkinje Cell Abnormalities While Cerebellar-Mediated Behaviors Remain Intact

Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17(1):103–11. https://doi.org/10.1016/j.conb.2007.01.009.

Article  CAS  PubMed  Google Scholar 

Bryson SE, Smith IM. Epidemiology of autism: prevalence, associated characteristics, and implications for research and service delivery. Ment Retard Dev Disabil Res Rev. 1998;4(2):97–103.

Article  Google Scholar 

Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.

Article  CAS  PubMed  Google Scholar 

Donovan APA, Basson MA. The neuroanatomy of autism—a developmental perspective. J Anat. 2017;230(1):4–15. https://doi.org/10.1111/joa.12542.

Article  PubMed  Google Scholar 

Palmen SJMC. Neuropathological findings in autism. Brain. 2004;127(12):2572–83. https://doi.org/10.1093/brain/awh287.

Article  PubMed  Google Scholar 

Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P. A clinicopathological study of autism. Brain: A J Neurol. 1998;121(Pt 5):889–905.

Article  Google Scholar 

Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum (London, England). 2012;11(3):777–807. https://doi.org/10.1007/s12311-012-0355-9.

Article  PubMed  PubMed Central  Google Scholar 

Mapelli L, Soda T, D’Angelo E, Prestori F. The cerebellar involvement in autism spectrum disorders: from the social brain to mouse models. Int J Mol Sci. 2022;23(7):3894. https://doi.org/10.3390/ijms23073894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dickson PE, Rogers TD, Mar ND, Martin LA, Heck D, Blaha CD, Goldowitz D, Mittleman G. Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem. 2010;94(2):220–8. https://doi.org/10.1016/j.nlm.2010.05.010.

Article  PubMed  PubMed Central  Google Scholar 

Martin LA, Goldowitz D, Mittleman G. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci. 2010;31(3):544–55. https://doi.org/10.1111/j.1460-9568.2009.07073.x.

Article  PubMed  PubMed Central  Google Scholar 

Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20(12):1744–51. https://doi.org/10.1038/s41593-017-0004-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488(7413):647–51. https://doi.org/10.1038/nature11310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15(9):409–16. https://doi.org/10.1016/j.tics.2011.07.003.

Article  PubMed  PubMed Central  Google Scholar 

Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113(5):e472–86.

Article  PubMed  Google Scholar 

Maria Christina Schwaibold E, Zoll B, Burfeind P, Hobbiebrunken E, Wilken B, Funke R, Shoukier M. A 3p interstitial deletion in two monozygotic twin brothers and an 18-year-old man: further characterization and review. Am J Med Genet Part A. 2013;n/a-n/a https://doi.org/10.1002/ajmg.a.36129.

Okumura A, Yamamoto T, Miyajima M, Shimojima K, Kondo S, Abe S, Ikeno M, Shimizu T. 3p Interstitial deletion including PRICKLE2 in identical twins with autistic features. Pediatr Neurol. 2014;51(5):730–3. https://doi.org/10.1016/j.pediatrneurol.2014.07.025.

Article  PubMed  Google Scholar 

Sowers LP, Loo L, Wu Y, Campbell E, Ulrich JD, Wu S, Paemka L, Wassink T, Meyer K, Bing X, El-Shanti H, Usachev YM, Ueno N, Manak RJ, Shepherd AJ, Ferguson PJ, Darbro BW, Richerson GB, Mohapatra DP, et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry. 2013;18(10):1077–89. https://doi.org/10.1038/mp.2013.71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veeman MT, Axelrod JD, Moon RT. A second canon. Dev Cell. 2003;5(3):367–77. https://doi.org/10.1016/S1534-5807(03)00266-1.

Article  CAS  PubMed  Google Scholar 

Fujimura L, Watanabe-Takano H, Sato Y, Tokuhisa T, Hatano M. Prickle promotes neurite outgrowth via the dishevelled dependent pathway in C1300 cells. Neurosci Lett. 2009;467(1):6–10. https://doi.org/10.1016/j.neulet.2009.09.050.

Article  CAS  PubMed  Google Scholar 

Mrkusich EM, Flanagan DJ, Whitington PM. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo. Dev Biol. 2011;358(1):224–30. https://doi.org/10.1016/j.ydbio.2011.07.032.

Article  CAS  PubMed  Google Scholar 

Tissir F, Goffinet AM. Expression of planar cell polarity genes during development of the mouse CNS. Eur J Neurosci. 2006;23(3):597–607. https://doi.org/10.1111/j.1460-9568.2006.04596.x.

Article  PubMed  Google Scholar 

Okuda H, Miyata S, Mori Y, Tohyama M. Mouse Prickle1 and Prickle2 are expressed in postmitotic neurons and promote neurite outgrowth. FEBS Lett. 2007;581(24):4754–60. https://doi.org/10.1016/j.febslet.2007.08.075.

Article  CAS  PubMed  Google Scholar 

Yagi T, Tokunaga T, Furuta Y, Nada S, Yoshida M, Tsukada T, Saga Y, Takeda N, Ikawa Y, Aizawa S. A novel ES cell line, TT2, with high germline-differentiating potency. Anal Biochem. 1993;214(1):70–6. https://doi.org/10.1006/abio.1993.1458.

Article  CAS  PubMed  Google Scholar 

Olesen MV, Needham EK, Pakkenberg B. The optical fractionator technique to estimate cell numbers in a rat model of electroconvulsive therapy. J Vis Exp. 2017;125:55737. https://doi.org/10.3791/55737.

Article  CAS  Google Scholar 

Carper RA. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123(4):836–44. https://doi.org/10.1093/brain/123.4.836.

Article  PubMed  Google Scholar 

Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318(21):1349–54. https://doi.org/10.1056/NEJM198805263182102.

Article  CAS  PubMed  Google Scholar 

Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ, Bukelis I, Stump MH, Jann AE, Lanham DC. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol. 2003;18(7):463–70. https://doi.org/10.1177/08830738030180070501.

Article  PubMed  Google Scholar 

Piochon C, Titley HK, Simmons DH, Grasselli G, Elgersma Y, Hansel C. Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal. Proc Natl Acad Sci. 2016;113(46):13221–6. https://doi.org/10.1073/pnas.1613897113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman JH, Nicholson DA. Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical conditioning of the eyeblink response. Brain Res. 1999;833(2):225–33. https://doi.org/10.1016/S0006-8993(99)01547-4.

Article  CAS  PubMed  Google Scholar 

Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B. Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res. 2004;1024(1–2):225–32. https://doi.org/10.1016/j.brainres.2004.08.003.

Article  CAS  PubMed  Google Scholar 

Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34(3):463–77. https://doi.org/10.1016/s0896-6273(02)00661-x.

Article  CAS  PubMed  Google Scholar 

Parker KL, Chen K-H, Kingyon JR, Cavanagh JF, Naryanan NS. Medial frontal ~4 Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion. J Neurophysiol., jn.00412.2015. 2015; https://doi.org/10.1152/jn.00412.2015.

Parker KL, Ruggiero RN, Narayanan NS. Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Front Behav Neurosci. 2015;9:294. https://doi.org/10.3389/fnbeh.2015.00294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voogd J. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5. https://doi.org/10.1016/S0166-2236(98)01318-6.

Article  CAS  PubMed  Google Scholar 

Pierce JE, Thomasson M, Voruz P, Selosse G, Péron J. Explicit and implicit emotion processing in the cerebellum: a meta-analysis and systematic review. Cerebellum. 2022. https://doi.org/10.1007/s12311-022-01459-4.

Comments (0)

No login
gif