Head-mounted central venous access during optical recordings and manipulations of neural activity in mice

Belin-Rauscent, A., Fouyssac, M., Bonci, A. & Belin, D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol. Psychiatry 79, 39–46 (2016).

Article  PubMed  Google Scholar 

Buckingham, R. E. Indwelling catheters for direct recording of arterial blood pressure and intravenous injection of drugs in the conscious rat. J. Pharm. Pharmacol. 28, 459–461 (1976).

Article  CAS  PubMed  Google Scholar 

Thomsen, M. & Caine, S. B. Intravenous drug self-administration in mice: practical considerations. Behav. Genet. 37, 101–118 (2007).

Article  PubMed  Google Scholar 

Slosky, L. M. et al. Establishment of multi-stage intravenous self-administration paradigms in mice. Sci. Rep. 12, 21422 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charles River 2022 Research models and services. Charles River Vascular Catheterizations US Pricing https://www.criver.com/sites/default/files/noindex/catalogs/rms/vascular-catheterizations-us-pricing.pdf (2022).

Resch, M., Neels, T., Tichy, A., Palme, R. & Rülicke, T. Impact assessment of tail-vein injection in mice using a modified anaesthesia induction chamber versus a common restrainer without anaesthesia. Lab. Anim. 53, 190–201 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, C. et al. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron. 110, 3018–3035.e7 (2022).

Thomsen, M. & Caine, S. B. Chronic intravenous drug self-administration in rats and mice. Curr. Protoc. Neurosci. 32, 9.20.1–9.20.40 (2005).

Google Scholar 

Gurumurthy, C. B. & Lloyd, K. C. K. Generating mouse models for biomedical research: technological advances. Dis. Model Mech. 12, dmm029462 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azkona, G. & Sanchez-Pernaute, R. Mice in translational neuroscience: what R we doing? Prog. Neurobiol. 217, 102330 (2022).

Article  PubMed  Google Scholar 

Kmiotek, E. K., Baimel, C. & Gill, K. J. Methods for intravenous self administration in a mouse model. J. Vis. Exp. https://doi.org/10.3791/3739. (2012).

Ahmed, S. H. Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci. Biobehav. l Rev. 35, 172–184 (2010).

Article  CAS  Google Scholar 

Al Shoyaib, A., Archie, S. R. & Karamyan, V. T. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm. Res. 37, 12 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Turner, P. V., Brabb, T., Pekow, C. & Vasbinder, M. A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 50, 600–613 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Park, A. Y. et al. Blood collection in unstressed, conscious, and freely moving mice through implantation of catheters in the jugular vein: a new simplified protocol. Physiol. Rep. 6, e13904 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shirasaki, Y., Ito, Y., Kikuchi, M., Imamura, Y. & Hayashi, T. Validation studies on blood collection from the jugular vein of conscious mice. J. Am. Assoc. Lab. Anim. Sci. 51, 345–351 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Valles, G. et al. Jugular vein catheter design and cocaine self-administration using mice: a comprehensive method. Front. Behav. Neurosci. 16, 880845 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vollmer, K. M. et al. A novel assay allowing drug self-administration, extinction, and reinstatement testing in head-restrained mice. Front. Behav. Neurosci. 15, 744715 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lapierre, A., LaFleur, R., Kane, K. & Lyons, B. Refinements of jugular vein catheterization with vascular access button in mice. Instech Labs. https://www.instechlabs.com/hubfs/pdfs/resources/refinements-of-jvc-w-vab-in-mice.pdf (accessed 14 November 2023).

Torrance, J. L. Care and use of jugular vein catheter. The Jackson Laboratory https://www.jax.org/-/media/jaxweb/files/jax-mice-and-services/jugular-vein-catheter-care-and-use-frev-092420.pdf (2021).

Obert, D. P. et al. Combined implanted central venous access and cortical recording electrode array in freely behaving mice. MethodsX 8, 101466 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Liu, N. et al. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur. J. Neurosci. 52, 2694–2704 (2020).

Article  PubMed  Google Scholar 

Võikar, V., Polus, A., Vasar, E. & Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav. 4, 240–252 (2005).

Article  PubMed  Google Scholar 

Arndt, S. S. et al. Individual housing of mice–impact on behaviour and stress responses. Physiol. Behav. 97, 385–393 (2009).

Article  CAS  PubMed  Google Scholar 

Fitzgerald, P. J., Yen, J. Y. & Watson, B. O. Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS ONE 14, e0215554 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, Z. et al. Neural mechanism underlying depressive-like state associated with social status loss. Cell 186, 560–576.e17 (2023).

Article  CAS  PubMed  Google Scholar 

Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018).

Article  CAS  PubMed  Google Scholar 

Anderson, L. C., Fox, J. G., Otto, G., Pritchett-Corning, K. R. & Whary, M. T. Laboratory Animal Medicine (Elsevier, 2015).

Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Innocent, N. et al. αConotoxin ArIB[V11L,V16D] is a potent and selective antagonist at rat and human native α7 nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 327, 529–537 (2008).

Article  CAS  PubMed  Google Scholar 

Adams, C., Riehl, T. & Johnson, T. Hand-held jugular phlebotomy technique for nonanesthetized mice. J. Am. Assoc. Lab. Anim. Sci. 50, 272 (2011).

Google Scholar 

Comments (0)

No login
gif