Belin-Rauscent, A., Fouyssac, M., Bonci, A. & Belin, D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol. Psychiatry 79, 39–46 (2016).
Buckingham, R. E. Indwelling catheters for direct recording of arterial blood pressure and intravenous injection of drugs in the conscious rat. J. Pharm. Pharmacol. 28, 459–461 (1976).
Article CAS PubMed Google Scholar
Thomsen, M. & Caine, S. B. Intravenous drug self-administration in mice: practical considerations. Behav. Genet. 37, 101–118 (2007).
Slosky, L. M. et al. Establishment of multi-stage intravenous self-administration paradigms in mice. Sci. Rep. 12, 21422 (2022).
Article CAS PubMed PubMed Central Google Scholar
Charles River 2022 Research models and services. Charles River Vascular Catheterizations US Pricing https://www.criver.com/sites/default/files/noindex/catalogs/rms/vascular-catheterizations-us-pricing.pdf (2022).
Resch, M., Neels, T., Tichy, A., Palme, R. & Rülicke, T. Impact assessment of tail-vein injection in mice using a modified anaesthesia induction chamber versus a common restrainer without anaesthesia. Lab. Anim. 53, 190–201 (2019).
Article CAS PubMed Google Scholar
Liu, C. et al. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron. 110, 3018–3035.e7 (2022).
Thomsen, M. & Caine, S. B. Chronic intravenous drug self-administration in rats and mice. Curr. Protoc. Neurosci. 32, 9.20.1–9.20.40 (2005).
Gurumurthy, C. B. & Lloyd, K. C. K. Generating mouse models for biomedical research: technological advances. Dis. Model Mech. 12, dmm029462 (2019).
Article CAS PubMed PubMed Central Google Scholar
Azkona, G. & Sanchez-Pernaute, R. Mice in translational neuroscience: what R we doing? Prog. Neurobiol. 217, 102330 (2022).
Kmiotek, E. K., Baimel, C. & Gill, K. J. Methods for intravenous self administration in a mouse model. J. Vis. Exp. https://doi.org/10.3791/3739. (2012).
Ahmed, S. H. Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci. Biobehav. l Rev. 35, 172–184 (2010).
Al Shoyaib, A., Archie, S. R. & Karamyan, V. T. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm. Res. 37, 12 (2019).
Article PubMed PubMed Central Google Scholar
Turner, P. V., Brabb, T., Pekow, C. & Vasbinder, M. A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 50, 600–613 (2011).
CAS PubMed PubMed Central Google Scholar
Park, A. Y. et al. Blood collection in unstressed, conscious, and freely moving mice through implantation of catheters in the jugular vein: a new simplified protocol. Physiol. Rep. 6, e13904 (2018).
Article PubMed PubMed Central Google Scholar
Shirasaki, Y., Ito, Y., Kikuchi, M., Imamura, Y. & Hayashi, T. Validation studies on blood collection from the jugular vein of conscious mice. J. Am. Assoc. Lab. Anim. Sci. 51, 345–351 (2012).
CAS PubMed PubMed Central Google Scholar
Valles, G. et al. Jugular vein catheter design and cocaine self-administration using mice: a comprehensive method. Front. Behav. Neurosci. 16, 880845 (2022).
Article CAS PubMed PubMed Central Google Scholar
Vollmer, K. M. et al. A novel assay allowing drug self-administration, extinction, and reinstatement testing in head-restrained mice. Front. Behav. Neurosci. 15, 744715 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lapierre, A., LaFleur, R., Kane, K. & Lyons, B. Refinements of jugular vein catheterization with vascular access button in mice. Instech Labs. https://www.instechlabs.com/hubfs/pdfs/resources/refinements-of-jvc-w-vab-in-mice.pdf (accessed 14 November 2023).
Torrance, J. L. Care and use of jugular vein catheter. The Jackson Laboratory https://www.jax.org/-/media/jaxweb/files/jax-mice-and-services/jugular-vein-catheter-care-and-use-frev-092420.pdf (2021).
Obert, D. P. et al. Combined implanted central venous access and cortical recording electrode array in freely behaving mice. MethodsX 8, 101466 (2021).
Article PubMed PubMed Central Google Scholar
Liu, N. et al. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur. J. Neurosci. 52, 2694–2704 (2020).
Võikar, V., Polus, A., Vasar, E. & Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav. 4, 240–252 (2005).
Arndt, S. S. et al. Individual housing of mice–impact on behaviour and stress responses. Physiol. Behav. 97, 385–393 (2009).
Article CAS PubMed Google Scholar
Fitzgerald, P. J., Yen, J. Y. & Watson, B. O. Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS ONE 14, e0215554 (2019).
Article CAS PubMed PubMed Central Google Scholar
Fan, Z. et al. Neural mechanism underlying depressive-like state associated with social status loss. Cell 186, 560–576.e17 (2023).
Article CAS PubMed Google Scholar
Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018).
Article CAS PubMed Google Scholar
Anderson, L. C., Fox, J. G., Otto, G., Pritchett-Corning, K. R. & Whary, M. T. Laboratory Animal Medicine (Elsevier, 2015).
Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
Article CAS PubMed PubMed Central Google Scholar
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
Article PubMed PubMed Central Google Scholar
Innocent, N. et al. αConotoxin ArIB[V11L,V16D] is a potent and selective antagonist at rat and human native α7 nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 327, 529–537 (2008).
Article CAS PubMed Google Scholar
Adams, C., Riehl, T. & Johnson, T. Hand-held jugular phlebotomy technique for nonanesthetized mice. J. Am. Assoc. Lab. Anim. Sci. 50, 272 (2011).
Comments (0)