Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).
Article CAS PubMed Google Scholar
Mann, S. The origins of life: old problems, new chemistries. Angew. Chem. Int. Ed. 52, 155–162 (2013).
Del Bianco, C. & Mansy, S. S. Nonreplicating protocells. Acc. Chem. Res. 45, 2125–2130 (2012).
Xu, C., Hu, S. & Chen, X. Artificial cells: from basic science to applications. Mater. Today 19, 516–532 (2016).
Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. 61, e202110855 (2022).
Buddingh’, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).
Article PubMed PubMed Central Google Scholar
Kumar, S., Karmacharya, M. & Cho, Y.-K. Bridging the gap between nonliving matter and cellular life. Small 19, 2202962 (2023).
Maity, S. et al. Caught in the act: mechanistic insight into supramolecular polymerization-driven self-replication from real-time visualization. J. Am. Chem. Soc. 142, 13709–13717 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413 (2017).
Robinson, A. O., Venero, O. M. & Adamala, K. P. Toward synthetic life: biomimetic synthetic cell communication. Curr. Opin. Chem. Biol. 64, 165–173 (2021).
Article CAS PubMed PubMed Central Google Scholar
Niederholtmeyer, H., Chaggan, C. & Devaraj, N. K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun. 9, 5027 (2018).
Article PubMed PubMed Central Google Scholar
Pearce, S. & Perez-Mercader, J. Chemoadaptive polymeric assemblies by integrated chemical feedback in self-assembled synthetic protocells. ACS Cent. Sci. 7, 1543–1550 (2021).
Article CAS PubMed PubMed Central Google Scholar
Cheng, G. et al. Self-assembly of smart multifunctional hybrid compartments with programmable bioactivity. Chem. Mater. 29, 2081–2089 (2017).
Cheng, G. & Pérez-Mercader, J. Engineering programmable synthetic vesicles with permeability regulated by a single molecular bridge. Chem. Mater. 31, 5691–5698 (2019).
Blackman, L. D. et al. Permeable protein-loaded polymersome cascade nanoreactors by polymerization-induced self-assembly. ACS Macro Lett. 6, 1263–1267 (2017).
Article CAS PubMed PubMed Central Google Scholar
Caschera, F. & Noireaux, V. Compartmentalization of an all-E. coli cell-free expression system for the construction of a minimal cell. Artif. Life 22, 185–195 (2016).
Spoelstra, W. K., Deshpande, S. & Dekker, C. Tailoring the appearance: what will synthetic cells look like? Curr. Opin. Biotechnol. 51, 47–56 (2018).
Article CAS PubMed Google Scholar
Schoonen, L. & van Hest, J. C. M. Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics. Adv. Mater. 28, 1109–1128 (2016).
Article CAS PubMed Google Scholar
Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42, 512–529 (2013).
Article CAS PubMed Google Scholar
Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).
Article CAS PubMed Google Scholar
Gouveia, M. G. et al. Polymersome-based protein drug delivery—quo vadis? Chem. Soc. Rev. 52, 728–778 (2023).
Article CAS PubMed Google Scholar
Rother, M., Nussbaumer, M. G., Renggli, K. & Bruns, N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem. Soc. Rev. 45, 6213–6249 (2016).
Article CAS PubMed Google Scholar
Matoori, S. & Leroux, J.-C. Twenty-five years of polymersomes: lost in translation? Mater. Horizons 7, 1297–1309 (2020).
Varlas, S. et al. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale 11, 12643–12654 (2019).
Article CAS PubMed Google Scholar
Pei, Y., Lowe, A. B. & Roth, P. J. Stimulus-responsive nanoparticles and associated (reversible) polymorphism via polymerization induced self-assembly (PISA). Macromol. Rapid Commun. 38, 1600528 (2017).
Penfold, N. J. W., Yeow, J., Boyer, C. & Armes, S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 8, 1029–1054 (2019).
Article CAS PubMed Google Scholar
Busatto, N., Stolojan, V., Shaw, M., Keddie, J. L. & Roth, P. J. Reactive polymorphic nanoparticles: preparation via polymerization-induced self-assembly and postsynthesis thiol–para-fluoro core modification. Macromol. Rapid Commun. 40, 1800346 (2019).
Sobotta, F. H. et al. Tuneable time delay in the burst release from oxidation-sensitive polymersomes made by PISA. Angew. Chem. Int. Ed. Engl. https://doi.org/10.1002/anie.202108928 (2021).
Article PubMed PubMed Central Google Scholar
Le, D., Keller, D. & Delaittre, G. Reactive and functional nanoobjects by polymerization-induced self-assembly. Macromol. Rapid Commun. 40, 1800551 (2019).
Cheng, G. & Pérez-Mercader, J. Polymerization-induced self-assembly for artificial biology: opportunities and challenges. Macromol. Rapid Commun. 40, 1970006 (2019).
Wan, J., Fan, B. & Thang, S. H. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem. Sci. 13, 4192–4224 (2022).
Article CAS PubMed PubMed Central Google Scholar
D’Agosto, F., Rieger, J. & Lansalot, M. RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 59, 8368–8392 (2020).
Charleux, B., Delaittre, G., Rieger, J. & D’Agosto, F. Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 45, 6753–6765 (2012).
Lansalot, M. & Rieger, J. Polymerization-induced self-assembly. Macromol. Rapid Commun. 40, 1800885 (2019).
Liu, C., Hong, C. Y. & Pan, C. Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 11, 3673–3689 (2020).
Bastakoti, B. P. & Perez-Mercader, J. Facile one-pot synthesis of functional giant polymeric vesicles controlled by oscillatory chemistry. Angew. Chem. Int. Ed. 56, 12086–12091 (2017).
Yoshida, E. Giant vesicles prepared by nitroxide-mediated photo-controlled/living radical polymerization-induced self-assembly. Colloid. Polym. Sci. 291, 2733–2739 (2013).
Yoshida, E. Morphology control of giant vesicles by manipulating hydrophobic-hydrophilic balance of amphiphilic random block copolymers through polymerization-induced self-assembly. Colloid. Polym. Sci. 292, 763–769 (2014).
Albertsen, A. N., Szymański, J. K. & Pérez-Mercader, J. Emergent properties of giant vesicles formed by a polymerization-induced self-assembly (PISA) reaction. Sci Rep. 7, 41534 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rodriguez, K. J. et al. Repurposing biocatalysts to control radical polymerizations. ACS Macro Lett. 7, 1111–1119 (2018).
Article CAS PubMed Google Scholar
Tan, J. et al. Enzyme-PISA: an efficient method for preparing well-defined polymer nano-objects under mild conditions. Macromol. Rapid Commun. 39, 1700871 (2018).
Comments (0)