Brain regulatory T cells

DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

Article  CAS  PubMed  Google Scholar 

Machhi, J. et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol. Neurodegener. 15, 32 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burton, O. et al. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Preprint at bioRxiv https://doi.org/10.1101/2023.08.14.553196 (2023).

Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e24 (2020). This study is the first to analyse the phenotype, kinetics and function of brain-resident Tregcells in the homeostatic state in mice and humans.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019). This study unveils innovative mechanisms through which Tregcells actively participate in the process of tissue repair following brain injury.

Article  CAS  PubMed  Google Scholar 

Garg, G. et al. Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep. 26, 1854–1868.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Connor, R. A., Malpass, K. H. & Anderton, S. M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 179, 958–966 (2007).

Article  PubMed  Google Scholar 

Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

Article  PubMed  Google Scholar 

Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

CAS  PubMed  PubMed Central  Google Scholar 

Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Nishihara, H. et al. Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 17, 3 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, P. et al. C–C chemokine receptor type 5 (CCR5)-mediated docking of transferred Tregs protects against early blood–brain barrier disruption after stroke. J. Am. Heart Assoc. 6, e006387 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Da Mesquita, S. et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci. Adv. 7, eabe4601 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Ben-Yehuda, H. et al. Key role of the CCR2–CCL2 axis in disease modification in a mouse model of tauopathy. Mol. Neurodegener. 16, 39 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucaciu, A. et al. A sphingosine 1-phosphate gradient is linked to the cerebral recruitment of T helper and regulatory T helper cells during acute ischemic stroke. Int. J. Mol. Sci. 21, 6242 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. T. et al. A crucial role of CXCL14 for promoting regulatory T cells activation in stroke. Theranostics 7, 855–875 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hrastelj, J. et al. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun. 3, fcab155 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Llovera, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 134, 851–868 (2017).

Article  CAS  PubMed  Google Scholar 

Wolburg, H. & Mack, A. F. Comment on the topology of mammalian blood–cerebrospinal fluid barrier. Neurol. Psychiatry Brain Res. 20, 70–72 (2014).

Article  Google Scholar 

Steffen, B. J., Breier, G., Butcher, E. C., Schulz, M. & Engelhardt, B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am. J. Pathol. 148, 1819–1838 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Kunis, G. et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136, 3427–3440 (2013).

Article  PubMed  Google Scholar 

Kertser, A. et al. Corticosteroid signaling at the brain–immune interface impedes coping with severe psychological stress. Sci. Adv. 5, eaav4111 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).

Article  CAS  PubMed  Google Scholar 

Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

Article  PubMed  Google Scholar 

Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dileepan, T. et al. Group A streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific TH17 cells. J. Clin. Invest. 126, 303–317 (2016).

Article  PubMed 

Comments (0)

No login
gif