Iron and the immune system

Sheftel, A. D., Mason, A. B. & Ponka, P. The long history of iron in the universe and in health and disease. Biochim. Biophys. Acta 1820, 161–187 (2012).

Article  CAS  PubMed  Google Scholar 

Teh, M. R., Armitage, A. E. & Drakesmith, H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol. Metabol. 35, 1026–1049 (2024).

Article  Google Scholar 

Frausto da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Oxford Univ. Press, 1991).

Lill, R. & Freibert, S. A. Mechanisms of mitochondrial iron–sulfur protein biogenesis. Annu. Rev. Biochem. 89, 471–499 (2020).

Article  CAS  PubMed  Google Scholar 

Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolberg, M., Strand, K. R., Graff, P. & Andersson, K. K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699, 1–34 (2004).

Article  CAS  PubMed  Google Scholar 

Camprubi, E., Jordan, S. F., Vasiliadou, R. & Lane, N. Iron catalysis at the origin of life. IUBMB Life 69, 373–381 (2017).

Article  CAS  PubMed  Google Scholar 

Weiss, M. C., Preiner, M., Xavier, J. C., Zimorski, V. & Martin, W. F. The last universal common ancestor between ancient earth chemistry and the onset of genetics. PLoS Genet. 14, e1007518 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Warburg, O. Iron, the oxygen-carrier of respiration-ferment. Science 61, 575–582 (1925).

Article  CAS  PubMed  Google Scholar 

Smith, R. P., Jones, C. W. & Cochran, W. E. Ferrous sulfate toxicity; report of a fatal case. N. Engl. J. Med. 243, 641–645 (1950).

Article  CAS  PubMed  Google Scholar 

Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. 25, 133–155 (2024).

Article  CAS  PubMed  Google Scholar 

Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wade, J., Byrne, D. J., Ballentine, C. J. & Drakesmith, H. Temporal variation of planetary iron as a driver of evolution. Proc. Natl Acad. Sci. USA 118, e2109865118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barber, M. F. & Elde, N. C. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346, 1362–1366 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frank, K. M., Schneewind, O. & Shieh, W. J. Investigation of a researcher’s death due to septicemic plague. N. Engl. J. Med. 364, 2563–2564 (2011).

Article  CAS  PubMed  Google Scholar 

Ganz, T. & Nemeth, E. Hypoferremia of inflammation: innate host defense against infections. Blood Cell Mol. Dis. 104, 102777 (2024).

Article  Google Scholar 

Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).

Article  CAS  PubMed  Google Scholar 

Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haschka, D., Hoffmann, A. & Weiss, G. Iron in immune cell function and host defense. Semin. Cell Dev. Biol. 115, 27–36 (2021).

Article  CAS  PubMed  Google Scholar 

Ullah, I. & Lang, M. Key players in the regulation of iron homeostasis at the host–pathogen interface. Front. Immunol. 14, 1279826 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arezes, J. et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 17, 47–57 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

Article  CAS  PubMed  Google Scholar 

Schade, A. L. & Caroline, L. An iron-binding component in human blood plasma. Science 104, 340–341 (1946).

Article  CAS  PubMed  Google Scholar 

Pi, H. et al. Clostridioides difficile ferrosome organelles combat nutritional immunity. Nature 623, 1009–1016 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCance, R. A. & Widdowson, E. M. The absorption and excretion of iron following oral and intravenous administration. J. Physiol. 94, 148–154 (1938).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

Article  CAS  PubMed  Google Scholar 

McCance, R. A. & Widdowson, E. M. Absorption and excretion of iron. Lancet 230, 680–684 (1937).

Article  Google Scholar 

Nemeth, E. & Ganz, T. Hepcidin and iron in health and disease. Annu. Rev. Med. 27, 261–277 (2023).

Article  Google Scholar 

Kautz, L. et al. BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 114, 2515–2520 (2009).

Article  CAS  PubMed  Google Scholar 

Kautz, L. et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112, 1503–1509 (2008).

Article  CAS  PubMed  Google Scholar 

Darton, T. C. et al. Rapidly escalating hepcidin and associated serum iron starvation are features of the acute response to typhoid infection in humans. PLoS Negl. Trop. Dis. 9, e0004029 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Rivera, S. et al. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106, 2196–2199 (2005).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif