Food allergy: begin at the skin, end at the mast cell?

Prausnitz, C. & Küstner, H. In Clinical Aspects of Immunology (eds Gell, P. G. H. & Coombs, R. R. A.) 808–816 (Blackwell, 1962).

Cohen, S. G. & Zelaya-Quesada, M. Prausnitz and Küstner phenomenon: the P-K reaction. J. Allergy Clin. Immunol. 114, 705–710 (2004).

Article  PubMed  Google Scholar 

Ad hoc joint Food and Agriculture Organization of the United Nations/World Health Organization expert consultation on risk assessment of food allergens. Part 1: review and validation of Codex Alimentarius priority allergen list through risk assessment: meeting report (FAO/WHO, 2022).

Santos, A. F. et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 78, 3057–3076 (2023).

Article  CAS  PubMed  Google Scholar 

Hemmings, O. et al. Combining allergen components improves the accuracy of peanut allergy diagnosis. J. Allergy Clin. Immunol. Pract. 10, 189–199 (2022).

Article  PubMed  Google Scholar 

Lieberman, J. A. et al. The utility of peanut components in the diagnosis of IgE-mediated peanut allergy among distinct populations. J. Allergy Clin. Immunol. Pract. 1, 75–82 (2013).

Article  PubMed  Google Scholar 

Zhuang, W. et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51, 865–876 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat, R. S. et al. Genome-wide landscapes of genes and repeatome reveal the genomic differences between the two subspecies of peanut (Arachis hypogaea). Crop. Des. 2, 100029 (2023).

Google Scholar 

Breiteneder, H. & Mills, E. N. Molecular properties of food allergens. J. Allergy Clin. Immunol. 115, 14–23 (2005).

Article  CAS  PubMed  Google Scholar 

Shreffler, W. G. et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177, 3677–3685 (2006).

Article  CAS  PubMed  Google Scholar 

Hill, D. A., Grundmeier, R. W., Ram, G. & Spergel, J. M. The epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma, allergic rhinitis, and food allergy in children: a retrospective cohort study. BMC Pediatr. 16, 133 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Papapostolou, N., Xepapadaki, P., Gregoriou, S. & Makris, M. Atopic dermatitis and food allergy: a complex interplay what we know and what we would like to learn. J. Clin. Med. 11, 4232 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta, Y. & Fulmali, D. G. Relationship between atopic dermatitis and food allergy in children. Cureus 14, e33160 (2022).

PubMed  PubMed Central  Google Scholar 

Strid, J., Hourihane, J., Kimber, I., Callard, R. & Strobel, S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur. J. Immunol. 34, 2100–2109 (2004).

Article  CAS  PubMed  Google Scholar 

Cerovic, V., Pabst, O. & Mowat, A. M. The renaissance of oral tolerance: merging tradition and new insights. Nat. Rev. Immunol. 25, 42–56 (2025). An in-depth summary of the key cellular and moleulcar processes that regulate oral tolerance.

Article  PubMed  Google Scholar 

Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17, 545–555 (2016). Describes the hierarchy of classical dendritic cell subsets in the induction of peripheral Tregcells and their redundancy during the development of oral tolerance.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tordesillas, L. & Berin, M. C. Mechanisms of oral tolerance. Clin. Rev. Allergy Immunol. 55, 107–117 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, E. G., Yin, X., Swaminathan, A. & Eisenbarth, S. C. Antigen-presenting cells in food tolerance and allergy. Front. Immunol. 11, 616020 (2020).

Article  CAS  PubMed  Google Scholar 

Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, T., Nguyen, A. & Gommerman, J. L. Dendritic cell subsets in intestinal immunity and inflammation. J. Immunol. 204, 1075–1083 (2020).

Article  CAS  PubMed  Google Scholar 

Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. & Elson, C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J. Immunol. 152, 4663–4670 (1994).

Article  CAS  PubMed  Google Scholar 

Mowat, A. M. To respond or not to respond — a personal perspective of intestinal tolerance. Nat. Rev. Immunol. 18, 405–415 (2018).

Article  CAS  PubMed  Google Scholar 

Coombes, J. L. & Maloy, K. J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin. Immunol. 19, 116–126 (2007).

Article  CAS  PubMed  Google Scholar 

Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007). The authors demonstrate that lamina propria dendritic cells promote Tregcell conversion dependent on TGFβ and retinoic acid.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong, S. W. et al. Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction. Nature 607, 762–768 (2022). This study shows that exposure to food antigens causes cognate CD4+naive T cells to form a complex set of non-canonical hyporesponsive T helper cell subsets that lack the inflammatory functions and have the potential to produce regulatory T cells.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

Article  CAS  PubMed  Google Scholar 

Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satitsuksanoa, P., Jansen, K., Globinska, A., van de Veen, W. & Akdis, M. Regulatory immune mechanisms in tolerance to food allergy. Front. Immunol. 9, 2939 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lockhart, A. et al. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J. Exp. Med. 220, e20221816 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barcik, W., Untersmayr, E., Pali-Scholl, I., O’Mahony, L. & Frei, R. Influence of microbiome and diet on immune responses in food allergy models. Drug Discov. Today Dis. Model. 17-18, 71–80 (2015).

Article  Google Scholar 

Tan, J. et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809–2824 (2016).

Article  CAS  PubMed  Google Scholar 

Tan, J. K., McKenzie, C., Mariño, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

Article  CAS 

Comments (0)

No login
gif