Vaccarino V, Sullivan S, Hammadah M, Wilmot K, Al Mheid I, Ramadan R, et al. Mental stress-Induced-myocardial ischemia in young patients with recent myocardial infarction: sex differences and mechanisms. Circulation. 2018;137(8):794–805.
Article PubMed PubMed Central Google Scholar
Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, et al. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. 2017;157:79–91.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 2022;7(1):78.
Article CAS PubMed PubMed Central Google Scholar
Yao H, Xie Q, He Q, Zeng L, Long J, Gong Y, et al. Pretreatment with panaxatriol saponin attenuates mitochondrial apoptosis and oxidative stress to facilitate treatment of myocardial ischemia-reperfusion injury via the regulation of Keap1/Nrf2 activity. Oxid Med Cell Longev. 2022;2022:9626703.
Article PubMed PubMed Central Google Scholar
Ito J, Omiya S, Rusu MC, Ueda H, Murakawa T, Tanada Y, et al. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. Elife. 2021;10:10.
Schaaf MB, Houbaert D, Mece O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ. 2019;26(4):665–79.
Article CAS PubMed PubMed Central Google Scholar
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, et al. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 2020;132:110855.
Article CAS PubMed Google Scholar
Li F, Fan XX, Chu C, Zhang Y, Kou JP, Yu BY. A strategy for optimizing the combination of active components based on Chinese medicinal formula Sheng-Mai-San for myocardial ischemia. Cell Physiol Biochem. 2018;45(4):1455–71.
Article CAS PubMed Google Scholar
Yang X, He T, Han S, Zhang X, Sun Y, Xing Y, et al. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxid Med Cell Longev. 2019;2019:3231424.
Article PubMed PubMed Central Google Scholar
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, et al. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: possible mechanism and target analysis. Front Pharmacol. 2020;11:570867.
Article CAS PubMed Google Scholar
Liang WL, Cai MR, Zhang MQ, Cui S, Zhang TR, Cheng WH, et al. Chinese herbal medicine alleviates myocardial ischemia/reperfusion Injury by regulating endoplasmic reticulum stress. Evid Based Complement Alternat Med. 2021;2021:4963346.
Article PubMed PubMed Central Google Scholar
Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S, et al. Salvia miltiorrhiza: a potential red light to the development of cardiovascular diseases. Curr Pharm Des. 2017;23(7):1077–97.
Article CAS PubMed PubMed Central Google Scholar
Xiao Z, Liu W, Mu YP, Zhang H, Wang XN, Zhao CQ, et al. Pharmacological effects of salvianolic acid B against oxidative damage. Front Pharmacol. 2020;11: 572373.
Article CAS PubMed PubMed Central Google Scholar
Xiang J, Zhang C, Di T, Chen L, Zhao W, Wei L, et al. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered. 2022;13(2):3486–502.
Article CAS PubMed PubMed Central Google Scholar
Li Q, Zuo Z, Pan Y, Zhang Q, Xu L, Jiang B. Salvianolic acid B alleviates myocardial ischemia injury by suppressing NLRP3 inflammasome activation via SIRT1-AMPK-PGC-1alpha signaling pathway. Cardiovasc Toxicol. 2022;22(9):842–57.
Article CAS PubMed Google Scholar
Hu Y, Wang X, Li Q, Pan Y, Xu L. Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome. Mol Med Rep. 2020;22(6):5199–208.
Article CAS PubMed PubMed Central Google Scholar
Yu LJ, Zhang KJ, Zhu JZ, Zheng Q, Bao XY, Thapa S, et al. Salvianolic acid exerts cardioprotection through promoting angiogenesis in animal models of acute myocardial infarction: preclinical evidence. Oxid Med Cell Longev. 2017;2017:8192383.
Article PubMed PubMed Central Google Scholar
Li CL, Liu B, Wang ZY, Xie F, Qiao W, Cheng J, et al. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol. 2020;139:98–112.
Article CAS PubMed Google Scholar
Chen F, Wang C, Sun J, Wang J, Wang L, Li J. Salvianolic acid B reduced the formation of epidural fibrosis in an experimental rat model. J Orthop Surg Res. 2016;11(1):141.
Article PubMed PubMed Central Google Scholar
Hou D, Fu H, Zheng Y, Lu D, Ma Y, Yin Y, et al. Uncoupling protein 1 knockout aggravates isoproterenol-induced acute myocardial ischemia via AMPK/mTOR/PPARalpha pathways in rats. Transgenic Res. 2022;31(1):107–18.
Article CAS PubMed Google Scholar
Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through mir-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8(1):169–84.
Article CAS PubMed PubMed Central Google Scholar
Ambrose JA. Myocardial ischemia and infarction. J Am Coll Cardiol. 2006;47(11 Suppl):D13-7.
Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: plant-based approaches for intervention. Phytother Res. 2018;32(10):1908–32.
Wu WY, Wang YP. Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components. Acta Pharmacol Sin. 2012;33(9):1119–30.
Article CAS PubMed PubMed Central Google Scholar
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin. 2018;39(5):802–24.
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Li R, Zheng Y, Zhou Y, Fan X. Erythrocyte membrane-enveloped salvianolic acid B nanoparticles attenuate cerebral ischemia-reperfusion Injury. Int J Nanomed. 2022;17:3561–77.
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21(3):425–532.
Article PubMed PubMed Central Google Scholar
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.
Article CAS PubMed PubMed Central Google Scholar
Eichmann A, Simons M. VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol. 2012;24(2):188–93.
Article CAS PubMed PubMed Central Google Scholar
Korpela H, Lampela J, Airaksinen J, Jarvelainen N, Siimes S, Valli K, et al. AAV2-VEGF-B gene therapy failed to induce angiogenesis in ischemic porcine myocardium due to inflammatory responses. Gene Ther. 2022;29(10–11):643–52.
Article CAS PubMed PubMed Central Google Scholar
Braile M, Marcella S, Cristinziano L, Galdiero MR, Modestino L, Ferrara AL, et al. VEGF-A in cardiomyocytes and heart diseases. Int J Mol Sci. 2020;21:15.
Kalra K, Eberhard J, Farbehi N, Chong JJ, Xaymardan M. Role of PDGF-A/B ligands in Cardiac Repair after Myocardial Infarction. Front Cell Dev Biol. 2021;9: 669188.
Article PubMed PubMed Central Google Scholar
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, et al. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 2019;317(5):H891–922.
Article CAS PubMed PubMed Central Google Scholar
Feng J, Zhan J, Ma S. LRG1 promotes hypoxia-induced cardiomyocyte apoptosis and autophagy by regulating hypoxia-inducible factor-1alpha. Bioengineered. 2021;12(1):8897–907.
Article CAS PubMed PubMed Central Google Scholar
Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, et al. BCL2–regulated apoptotic process in myocardial ischemia–reperfusion injury (review). Int J Mol Med. 2021;47(1):23–36.
Comments (0)