Sung, H. et al. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).
DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).
Article CAS PubMed PubMed Central Google Scholar
Almagro, J. et al. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).
Article CAS PubMed Google Scholar
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
Article CAS PubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011).
Article CAS PubMed Google Scholar
Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17(+) gammadelta T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).
Article CAS PubMed Google Scholar
Silva-Santos, B., Mensurado, S. & Coffelt, S. B. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).
Article CAS PubMed PubMed Central Google Scholar
Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of gammadelta T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).
Article CAS PubMed Google Scholar
Ribot, J. C., Lopes, N. & Silva-Santos, B. gammadelta T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).
Article CAS PubMed Google Scholar
Xu, Y. et al. Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol. Immunol. 18, 427–439 (2021).
Article CAS PubMed Google Scholar
Alnaggar, M. et al. Allogenic Vgamma9Vdelta2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).
Article PubMed PubMed Central Google Scholar
Liang, J. et al. Allogeneic Vgamma9Vdelta2 T-cell therapy promotes pulmonary lesion repair: an open-label, single-arm pilot study in patients with multidrug-resistant tuberculosis. Front. Immunol. 12, 756495 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sebestyen, Z. et al. Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).
Article CAS PubMed Google Scholar
Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol. Immunol. 17, 914–924 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).
Article CAS PubMed PubMed Central Google Scholar
Silva-Santos, B., Serre, K. & Norell, H. gammadelta T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).
Article CAS PubMed Google Scholar
Sun, L. et al. T cells in health and disease. Sig. Transduct. Target Ther. 8, 235 (2023).
Qu, G. et al. Comparing mouse and human tissue-resident gammadelta T cells. Front. Immunol. 13, 891687 (2022).
Article CAS PubMed PubMed Central Google Scholar
Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).
Article CAS PubMed Google Scholar
Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).
Article CAS PubMed PubMed Central Google Scholar
Porter, D. L. et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).
Article CAS PubMed PubMed Central Google Scholar
June, C. H. et al. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).
Article CAS PubMed Google Scholar
Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).
Article CAS PubMed PubMed Central Google Scholar
Mirzaei, H. R. et al. Prospects for chimeric antigen receptor (CAR) gammadelta T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380, 413–423 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wawrzyniecka, P. A. et al. Chimeric antigen receptor T cells for gamma-delta T cell malignancies. Leukemia 36, 577–579 (2022).
Article CAS PubMed Google Scholar
Makkouk, A. et al. Allogeneic Vδ1 gamma delta T cells engineered with glypican-3 (GPC3)-specific CAR expressing soluble IL-15 have enhanced antitumor efficacy against hepatocellular carcinoma in preclinical models. J. Clin. Oncol. 39, e14511–e14511 (2021).
Saito, H. et al. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature 309, 757–762 (1984).
Article CAS PubMed Google Scholar
Hayday, A. C. et al. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40, 259–269 (1985).
Article CAS PubMed Google Scholar
Lefranc, M.-P. & Rabbitts, T. Two tandemly organized human genes encoding the T-cell γ constant-region sequences show multiple rearrangement in different T-cell types. Nature 316, 464–466 (1985).
Article CAS PubMed Google Scholar
Murre, C. et al. Human γ-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7. Nature 316, 549–552 (1985).
Article CAS PubMed Google Scholar
Bank, I. et al. A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322, 179–181 (1986).
Article CAS PubMed Google Scholar
Brenner, M. B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).
Article CAS PubMed Google Scholar
Borst, J. et al. A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325, 683–688 (1987).
Article CAS PubMed Google Scholar
Born, W. et al. Recognition of a peptide antigen by heat shock-reactive γδ T lymphocytes. Science 249, 67–69 (1990).
Article CAS PubMed Google Scholar
O’Brien, R. L. et al. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57, 667–674 (1989).
Holoshttz, J. et al. Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 339, 226–229 (1989).
Janis, E. M., Kaufmann, S. H., Schwartz, R. H. & Pardoll, D. M. Activation of γδ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244, 713–716 (1989).
Comments (0)