Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets

Berenblum, I. & Shubik, P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br. J. Cancer 1, 383–391 (1947).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).

Article  CAS  PubMed  Google Scholar 

Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).

Article  CAS  PubMed  Google Scholar 

Martin, G. S. The road to Src. Oncogene 23, 7910–7917 (2004).

Article  CAS  PubMed  Google Scholar 

Boveri, T. The Origin of Malignant Tumors. Arch. Intern. Med. 44, 910 (1929).

Article  Google Scholar 

Nordling, C. O. A new theory on the cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 91, 1983–1989 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huebner, R. J. & Todaro, G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl Acad. Sci. USA. 64, 1087–1094 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss, R. Molecular analysis of the oncogene. Nature 260, 93–93 (1976).

Article  Google Scholar 

Klein, G. & Klein, E. Evolution of tumours and the impact of molecular oncology. Nature 315, 190–195 (1985).

Article  CAS  PubMed  Google Scholar 

Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).

Article  CAS  PubMed  Google Scholar 

Santos, E. et al. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB-and Harvey-MSV transforming genes. Nature 298, 343–347 (1982).

Article  CAS  PubMed  Google Scholar 

Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

Article  PubMed  Google Scholar 

Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

Article  CAS  PubMed  Google Scholar 

Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

Article  Google Scholar 

Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dressler, L. et al. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol. 23, 35 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Fowler, J. C. & Jones, P. H. Somatic mutation: What shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Triolo, V. A. Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res. 25, 75–106 (1965).

CAS  PubMed  Google Scholar 

Watanabe, T., Dewey, M. J. & Mintz, B. Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice. Proc. Natl. Acad. Sci. USA. 75, 5113–5117, (1978).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678, (1985).

Article  CAS  PubMed  Google Scholar 

Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-beta. Science 248, 1656–1660, (1990).

Article  CAS  PubMed  Google Scholar 

Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260, (2000).

CAS  PubMed  Google Scholar 

Maffini, M. V. et al. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 117, 1495–1502 (2004).

Article  CAS  PubMed  Google Scholar 

Soto, A. M. & Sonnenschein, C. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 33, 332–340 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623, 432–441 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, W. W. et al. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell. 41, 1567–1585.e1567 (2023).

Article  CAS  PubMed  Google Scholar 

Li, Y. et al. Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell 186, 3921–3944.e3925 (2023).

Article  CAS  PubMed  Google Scholar 

Geffen, Y. et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 186, 3945–3967.e3926 (2023).

Article  CAS  PubMed  Google Scholar 

Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barkley, D. et al. Cancer cell states recur across tumor types and form specific interact

Comments (0)

No login
gif