Berenblum, I. & Shubik, P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br. J. Cancer 1, 383–391 (1947).
Article CAS PubMed PubMed Central Google Scholar
Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020).
Article PubMed PubMed Central Google Scholar
Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).
Article CAS PubMed Google Scholar
Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).
Article CAS PubMed Google Scholar
Martin, G. S. The road to Src. Oncogene 23, 7910–7917 (2004).
Article CAS PubMed Google Scholar
Boveri, T. The Origin of Malignant Tumors. Arch. Intern. Med. 44, 910 (1929).
Nordling, C. O. A new theory on the cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953).
Article CAS PubMed PubMed Central Google Scholar
Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 91, 1983–1989 (2004).
Article CAS PubMed PubMed Central Google Scholar
Huebner, R. J. & Todaro, G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl Acad. Sci. USA. 64, 1087–1094 (1969).
Article CAS PubMed PubMed Central Google Scholar
Weiss, R. Molecular analysis of the oncogene. Nature 260, 93–93 (1976).
Klein, G. & Klein, E. Evolution of tumours and the impact of molecular oncology. Nature 315, 190–195 (1985).
Article CAS PubMed Google Scholar
Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).
Article CAS PubMed Google Scholar
Santos, E. et al. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB-and Harvey-MSV transforming genes. Nature 298, 343–347 (1982).
Article CAS PubMed Google Scholar
Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).
Article CAS PubMed Google Scholar
Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).
Article CAS PubMed PubMed Central Google Scholar
Dressler, L. et al. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol. 23, 35 (2022).
Article PubMed PubMed Central Google Scholar
Fowler, J. C. & Jones, P. H. Somatic mutation: What shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022).
Article CAS PubMed PubMed Central Google Scholar
Triolo, V. A. Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res. 25, 75–106 (1965).
Watanabe, T., Dewey, M. J. & Mintz, B. Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice. Proc. Natl. Acad. Sci. USA. 75, 5113–5117, (1978).
Article CAS PubMed PubMed Central Google Scholar
Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678, (1985).
Article CAS PubMed Google Scholar
Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-beta. Science 248, 1656–1660, (1990).
Article CAS PubMed Google Scholar
Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260, (2000).
Maffini, M. V. et al. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 117, 1495–1502 (2004).
Article CAS PubMed Google Scholar
Soto, A. M. & Sonnenschein, C. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 33, 332–340 (2011).
Article PubMed PubMed Central Google Scholar
Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).
Article CAS PubMed PubMed Central Google Scholar
Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623, 432–441 (2023).
Article CAS PubMed PubMed Central Google Scholar
Liang, W. W. et al. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell. 41, 1567–1585.e1567 (2023).
Article CAS PubMed Google Scholar
Li, Y. et al. Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell 186, 3921–3944.e3925 (2023).
Article CAS PubMed Google Scholar
Geffen, Y. et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 186, 3945–3967.e3926 (2023).
Article CAS PubMed Google Scholar
Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).
Article CAS PubMed PubMed Central Google Scholar
Barkley, D. et al. Cancer cell states recur across tumor types and form specific interact
Comments (0)