Multifunctional mesoporous silica nanoparticles for biomedical applications

Ickenstein, L. M. & Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 16, 1205–1226 (2019).

Article  CAS  PubMed  Google Scholar 

Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 30, 1902634 (2020).

Article  CAS  Google Scholar 

Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target Ther. 4, 33 (2019).

Article  PubMed Central  PubMed  Google Scholar 

Parra-Nieto, J., Del Cid, M. A. G., de Cárcer, I. A. & Baeza, A. Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnol. J. 16, 2000150 (2021).

Article  CAS  Google Scholar 

Chen, L. et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct. Target Ther. 6, 225 (2021).

Article  PubMed Central  PubMed  Google Scholar 

Gupta, J. et al. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int. J. Biol. Macromol. 130, 515–526 (2019).

Article  CAS  PubMed  Google Scholar 

Soh, J. H., Chan, H.-M. & Ying, J. Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 30, 100831 (2020).

Article  CAS  Google Scholar 

Farzin, A., Etesami, S. A., Quint, J., Memic, A. & Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 9, 1901058 (2020).

Article  CAS  Google Scholar 

Xu, H., Li, S. & Liu, Y.-S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct. Target Ther. 7, 231 (2022).

Article  PubMed Central  PubMed  Google Scholar 

van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

Article  PubMed Central  PubMed  Google Scholar 

Zhou, Y. et al. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

Article  CAS  PubMed  Google Scholar 

de Lázaro, I. & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021).

Article  PubMed  Google Scholar 

Germain, M. et al. Delivering the power of nanomedicine to patients today. J. Control. Release 326, 164–171 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

Article  CAS  PubMed  Google Scholar 

Desai, P. P., Date, A. A. & Patravale, V. B. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov. Today Technol. 9, e87–e95 (2012).

Article  CAS  Google Scholar 

Barenholz, Y. C. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 160, 117–134 (2012).

Article  CAS  PubMed  Google Scholar 

Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: An update post COVID‐19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

An, D. et al. NIR‐II responsive inorganic 2D nanomaterials for cancer photothermal therapy: recent advances and future challenges. Adv. Funct. Mater. 31, 2101625 (2021).

Article  CAS  Google Scholar 

Wang, Y., Meng, H.-M. & Li, Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale 13, 8751–8772 (2021).

Article  CAS  PubMed  Google Scholar 

Li, S. et al. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors. J. Am. Chem. Soc. 142, 5649–5656 (2020).

Article  CAS  PubMed  Google Scholar 

Younis, M. R. et al. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 8, 2102587 (2021).

Article  CAS  Google Scholar 

Pan, X. et al. Metal–organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 30, 1800180 (2018).

Article  Google Scholar 

Sun, L. et al. Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomater. Sci. 9, 1945–1960 (2021).

Article  PubMed  Google Scholar 

Hao, Y.-N. et al. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J. Mater. Chem. B 9, 250–266 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, Y. et al. A metabolic multistage glutathione depletion used for tumor-specific chemodynamic therapy. ACS Nano 16, 4228–4238 (2022).

Article  CAS  PubMed  Google Scholar 

Xu, B. et al. A single‐atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019).

Article  CAS  Google Scholar 

Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 142, 1636–1644 (2019).

Article  Google Scholar 

Huang, H., Feng, W., Chen, Y. & Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).

Article  CAS  Google Scholar 

Croissant, J. G., Fatieiev, Y., Almalik, A. & Khashab, N. M. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7, 1700831 (2018).

Article  Google Scholar 

Nguyen, T. L., Choi, Y. & Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31, 1803953 (2019).

Article  Google Scholar 

Escriche‐Navarro, B. et al. Mesoporous silica materials as an emerging tool for cancer immunotherapy. Adv. Sci. 9, 2200756 (2022).

Article  Google Scholar 

Li, W. et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 31, 9887–9894 (2019).

Article  CAS  Google Scholar 

Zhao, S. et al. In situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-micro Lett. 11, 1–13 (2019).

Article  Google Scholar 

Li, X. et al. An RGD-modified hollow silica@ Au core/shell nanoplatform for tumor combination therapy. Acta Biomater. 62, 273–283 (2017).

Article  CAS  PubMed  Google Scholar 

Chakraborti, S., Basu, R. N. & Panda, S. Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection. Plasmonics 13, 1057–1080 (2018).

Article  CAS  Google Scholar 

Gan, Q., Zhu, J., Yuan, Y. & Liu, C. pH-Responsive Fe3O4 nanopartilces-capped mesoporous silica supports for protein delivery. J. Nanosci. Nanotechnol. 16, 5470–5479 (2016).

Article  CAS  PubMed  Google Scholar 

Shao, D. et al. Facile Synthesis of Core–shell Magnetic Mesoporous Silica Nanoparticles for pH‐sensitive Anticancer Drug Delivery. Chem. Biol. Drug Des. 86, 1548–1553 (2015).

Article  CAS  PubMed  Google Scholar 

Janjua, T. I., Cao, Y., Yu, C. & Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 6, 1072–1074 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bukara, K. et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. Eur. J. Pharm. Biopharm. 108, 220–225 (2016).

Article  CAS  PubMed  Google Scholar 

Rastinehad, A. R. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl Acad. Sci. USA 116, 18590–18596 (2019).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Yang, P., Gai, S. & Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41, 3679–3698 (2012).

Article  CAS  PubMed  Google Scholar 

Croissant, J. G., Butler, K. S., Zin

Comments (0)

No login
gif