Ickenstein, L. M. & Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 16, 1205–1226 (2019).
Article CAS PubMed Google Scholar
Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 30, 1902634 (2020).
Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target Ther. 4, 33 (2019).
Article PubMed Central PubMed Google Scholar
Parra-Nieto, J., Del Cid, M. A. G., de Cárcer, I. A. & Baeza, A. Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnol. J. 16, 2000150 (2021).
Chen, L. et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct. Target Ther. 6, 225 (2021).
Article PubMed Central PubMed Google Scholar
Gupta, J. et al. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int. J. Biol. Macromol. 130, 515–526 (2019).
Article CAS PubMed Google Scholar
Soh, J. H., Chan, H.-M. & Ying, J. Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 30, 100831 (2020).
Farzin, A., Etesami, S. A., Quint, J., Memic, A. & Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 9, 1901058 (2020).
Xu, H., Li, S. & Liu, Y.-S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct. Target Ther. 7, 231 (2022).
Article PubMed Central PubMed Google Scholar
van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).
Article PubMed Central PubMed Google Scholar
Zhou, Y. et al. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).
Article CAS PubMed Google Scholar
de Lázaro, I. & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021).
Germain, M. et al. Delivering the power of nanomedicine to patients today. J. Control. Release 326, 164–171 (2020).
Article CAS PubMed Central PubMed Google Scholar
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Article CAS PubMed Google Scholar
Desai, P. P., Date, A. A. & Patravale, V. B. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov. Today Technol. 9, e87–e95 (2012).
Barenholz, Y. C. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 160, 117–134 (2012).
Article CAS PubMed Google Scholar
Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: An update post COVID‐19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).
Article CAS PubMed Central PubMed Google Scholar
An, D. et al. NIR‐II responsive inorganic 2D nanomaterials for cancer photothermal therapy: recent advances and future challenges. Adv. Funct. Mater. 31, 2101625 (2021).
Wang, Y., Meng, H.-M. & Li, Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale 13, 8751–8772 (2021).
Article CAS PubMed Google Scholar
Li, S. et al. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors. J. Am. Chem. Soc. 142, 5649–5656 (2020).
Article CAS PubMed Google Scholar
Younis, M. R. et al. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 8, 2102587 (2021).
Pan, X. et al. Metal–organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 30, 1800180 (2018).
Sun, L. et al. Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomater. Sci. 9, 1945–1960 (2021).
Hao, Y.-N. et al. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J. Mater. Chem. B 9, 250–266 (2021).
Article CAS PubMed Google Scholar
Huang, Y. et al. A metabolic multistage glutathione depletion used for tumor-specific chemodynamic therapy. ACS Nano 16, 4228–4238 (2022).
Article CAS PubMed Google Scholar
Xu, B. et al. A single‐atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019).
Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 142, 1636–1644 (2019).
Huang, H., Feng, W., Chen, Y. & Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).
Croissant, J. G., Fatieiev, Y., Almalik, A. & Khashab, N. M. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7, 1700831 (2018).
Nguyen, T. L., Choi, Y. & Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31, 1803953 (2019).
Escriche‐Navarro, B. et al. Mesoporous silica materials as an emerging tool for cancer immunotherapy. Adv. Sci. 9, 2200756 (2022).
Li, W. et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 31, 9887–9894 (2019).
Zhao, S. et al. In situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-micro Lett. 11, 1–13 (2019).
Li, X. et al. An RGD-modified hollow silica@ Au core/shell nanoplatform for tumor combination therapy. Acta Biomater. 62, 273–283 (2017).
Article CAS PubMed Google Scholar
Chakraborti, S., Basu, R. N. & Panda, S. Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection. Plasmonics 13, 1057–1080 (2018).
Gan, Q., Zhu, J., Yuan, Y. & Liu, C. pH-Responsive Fe3O4 nanopartilces-capped mesoporous silica supports for protein delivery. J. Nanosci. Nanotechnol. 16, 5470–5479 (2016).
Article CAS PubMed Google Scholar
Shao, D. et al. Facile Synthesis of Core–shell Magnetic Mesoporous Silica Nanoparticles for pH‐sensitive Anticancer Drug Delivery. Chem. Biol. Drug Des. 86, 1548–1553 (2015).
Article CAS PubMed Google Scholar
Janjua, T. I., Cao, Y., Yu, C. & Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 6, 1072–1074 (2021).
Article CAS PubMed Central PubMed Google Scholar
Bukara, K. et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. Eur. J. Pharm. Biopharm. 108, 220–225 (2016).
Article CAS PubMed Google Scholar
Rastinehad, A. R. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl Acad. Sci. USA 116, 18590–18596 (2019).
Article CAS PubMed Central PubMed Google Scholar
Yang, P., Gai, S. & Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41, 3679–3698 (2012).
Article CAS PubMed Google Scholar
Croissant, J. G., Butler, K. S., Zin
Comments (0)