Identification of the flavivirus conserved residues in the envelope protein hinge region for the rational design of a candidate West Nile live-attenuated vaccine

Pierson, T. C. & Diamond, M. S. The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser, J. A., Wang, T. & Barrett, A. D. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol. 12, 283–295 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arroyo, J. et al. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 78, 12497–12507 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser, J. A. et al. Genotypic and phenotypic characterization of West Nile virus NS5 methyltransferase mutants. Vaccine 37, 7155–7164 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G. et al. An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 4, 48 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zust, R. et al. Rational design of a live attenuated dengue vaccine: 2’-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog. 9, e1003521 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wicker, J. A. et al. A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349, 245–253 (2006).

Article  CAS  PubMed  Google Scholar 

Crabtree, M. B., Kinney, R. M. & Miller, B. R. Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch. Virol. 150, 771–786 (2005).

Article  CAS  PubMed  Google Scholar 

Whiteman, M. C. et al. Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus. Vaccine 28, 1075–1083 (2010).

Article  CAS  PubMed  Google Scholar 

Muylaert, I. R., Chambers, T. J., Galler, R. & Rice, C. M. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222, 159–168 (1996).

Article  CAS  PubMed  Google Scholar 

Hurrelbrink, R. J. & McMinn, P. C. Molecular determinants of virulence: the structural and functional basis for flavivirus attenuation. Adv. Virus Res. 60, 1–42 (2003).

Article  CAS  PubMed  Google Scholar 

Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. Phylogeny of the genus Flavivirus. J. Virol. 72, 73–83 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, S. et al. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus. Virology 353, 35–40 (2006).

Article  CAS  PubMed  Google Scholar 

Huang, C. Y. et al. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology 396, 305–315 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, X. et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat. Commun. 8, 14 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298 (1995).

Article  CAS  PubMed  Google Scholar 

Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

Article  CAS  PubMed Central  Google Scholar 

Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

Article  CAS  PubMed  Google Scholar 

Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986–6991 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanai, R. et al. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol. 80, 11000–11008 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cecilia, D. & Gould, E. A. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70–77 (1991).

Article  CAS  PubMed  Google Scholar 

Beasley, D. W. & Aaskov, J. G. Epitopes on the dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies. Virology 279, 447–458 (2001).

Article  CAS  PubMed  Google Scholar 

de Wispelaere, M. et al. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol. 25, 1006–1016.e1008 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Monath, T. P. et al. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J. Virol. 76, 1932–1943 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, E., Weir, R. C. & Dalgarno, L. Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology 232, 281–290 (1997).

Article  CAS  PubMed  Google Scholar 

Schlesinger, J. J. et al. Replication of yellow fever virus in the mouse central nervous system: comparison of neuroadapted and non-neuroadapted virus and partial sequence analysis of the neuroadapted strain. J. Gen. Virol. 77, 1277–1285 (1996).

Article  CAS  PubMed  Google Scholar 

McMinn, P. C., Weir, R. C. & Dalgarno, L. A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion activity. J. Gen. Virol. 77, 2085–2088 (1996).

Article  CAS  PubMed  Google Scholar 

Butrapet, S. et al. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion. Virology 413, 118–127 (2011).

Article  CAS  PubMed  Google Scholar 

Kinney, R. M. et al. Avian virulence and thermostable replication of the North American strain of West Nile virus. J. Gen. Virol. 87, 3611–3622 (2006).

Article  CAS  PubMed  Google Scholar 

Whiteman, M. C. et al. Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness. Vaccine 29, 9702–9710 (2011).

Article  CAS  PubMed  Google Scholar 

Beasley, D. W. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 79, 8339–8347 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser, J. A. & Barrett, A. D. T. Twenty years of progress toward West Nile virus vaccine development. Viruses 11, 823 (2019).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif