Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH, Jaffe ES. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019;133:1703–14.
Article CAS PubMed Central Google Scholar
Dummer R, Vermeer MH, Scarisbrick JJ, Kim YH, Stonesifer C, Tensen CP, Geskin LJ, Quaglino P, Ramelyte E. Cutaneous T cell lymphoma. Nat Rev Dis Primers. 2021. https://doi.org/10.1038/S41572-021-00296-9.
Dobos G, de Masson A, Ram-Wolff C, et al. Epidemiological changes in cutaneous lymphomas: an analysis of 8593 patients from the French Cutaneous Lymphoma Registry. Br J Dermatol. 2021;184:1059–67.
Article CAS PubMed Google Scholar
Weed J, Girardi M. The difficult—and often delayed—diagnosis of CTCL. Sci Transl Med. 2015. https://doi.org/10.1126/SCITRANSLMED.AAD2518.
Scarisbrick JJ, Quaglino P, Prince HM, et al. The PROCLIPI international registry of early-stage mycosis fungoides identifies substantial diagnostic delay in most patients. Br J Dermatol. 2019;181:350–7.
Article CAS PubMed Google Scholar
Mehta-Shah N, Horwitz SM, Ansell S, et al. NCCN guidelines insights: primary cutaneous lymphomas, version 2.2020: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2020;18:522–36.
Maredia H, Cozzio A, Dummer R, Ramelyte E, Kim EJ, Rozati S. Acute progression of the leukemic phase in mycosis fungoides and Sézary syndrome. JAAD Case Rep. 2021;15:92–6.
Article PubMed PubMed Central Google Scholar
Scarisbrick JJ. The PROCLIPI international registry, an important tool to evaluate the prognosis of cutaneous T cell lymphomas. Presse Med. 2022. https://doi.org/10.1016/J.LPM.2022.104123.
Hodak E, Sherman S, Papadavid E, et al. Should we be imaging lymph nodes at initial diagnosis of early-stage mycosis fungoides? Results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) international study. Br J Dermatol. 2021;184:524–31.
Article CAS PubMed Google Scholar
Scarisbrick J, Kim Y. Prognostic factors in mycosis fungoides and Sezary syndrome: results from the PROCLIPI study. Eur J Cancer. 2022;173:S18.
Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–22.
Article CAS PubMed Google Scholar
Scarisbrick JJ, Hodak E, Bagot M, et al. Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur J Cancer. 2018;93:47–56.
Vermeer MH, Moins-Teisserenc H, Bagot M, Quaglino P, Whittaker S. Flow cytometry for the assessment of blood tumour burden in cutaneous T-cell lymphoma: towards a standardized approach. Br J Dermatol. 2022;187:21–8.
Kalina T, Flores-Montero J, Van Der Velden VHJ, et al (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012 26:9 26:1986–2010.
Najidh S, Tensen CP, van der Sluijs-Gelling AJ, et al. Improved Sézary cell detection and novel insights into immunophenotypic and molecular heterogeneity in Sézary syndrome. Blood. 2021;138:2539–54.
Article CAS PubMed Google Scholar
Kim EJ, Hess S, Richardson SK, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest. 2005;115:798–812.
Article CAS PubMed PubMed Central Google Scholar
Rodney IJ, Kindred C, Angra K, Qutub ON, Villanueva AR, Halder RM. Hypopigmented mycosis fungoides: a retrospective clinicohistopathologic study. J Eur Acad Dermatol Venereol. 2017;31:808–14.
Article CAS PubMed Google Scholar
Furlan FC, Sanches JA. Hypopigmented mycosis fungoides: a review of its clinical features and pathophysiology. An Bras Dermatol. 2013;88:954–60.
Article PubMed PubMed Central Google Scholar
Villarreal AM, Gantchev J, Lagacé F, Barolet A, Sasseville D, Ødum N, Charli-Joseph YV, Salazar AH, Litvinov IV. Hypopigmented Mycosis Fungoides: Loss of Pigmentation Reflects Antitumor Immune Response in Young Patients. Cancers (Basel). 2020;12:1–21.
Cao S, Kruglov O, Akilov OE. CD8+ T lymphocytes in hypopigmented mycosis fungoides: malignant cells or reactive clone? Journal of Investigative Dermatology. 2023;143:521–524.e3.
Article CAS PubMed Google Scholar
van Doorn R, Scheffer E, Willemze R. Follicular mycosis fungoides, a distinct disease entity with or without associated follicular mucinosis: a clinicopathologic and follow-up study of 51 patients. Arch Dermatol. 2002. https://doi.org/10.1001/ARCHDERM.138.2.191.
Van Santen S, Roach REJ, Van Doorn R, et al. Clinical staging and prognostic factors in Folliculotropic Mycosis Fungoides. JAMA Dermatol. 2016;152:992–1000.
Hodak E, Amitay-Laish I, Atzmony L, Prag-Naveh H, Yanichkin N, Barzilai A, Kershenovich R, Feinmesser M. New insights into folliculotropic mycosis fungoides (FMF): A single-center experience. J Am Acad Dermatol. 2016;75:347–55.
Mitteldorf C, Stadler R, Sander CA, Kempf W. Folliculotropic mycosis fungoides. JDDG. Journal der Deutschen Dermatologischen Gesellschaft. 2018;16:543–57.
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753.
Article CAS PubMed Google Scholar
Krejsgaard T, Lindahl LM, Mongan NP, Wasik MA, Litvinov I V., Iversen L, Langhoff E, Woetmann A, Odum N (2016) Malignant inflammation in cutaneous T-cell lymphoma—a hostile takeover. Seminars in Immunopathology 2017 39:3 39:269–282.
Guenova E, Watanabe R, Teague JE, et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res. 2013;19:3755–63.
Article CAS PubMed PubMed Central Google Scholar
Durgin JS, Weiner DM, Wysocka M, Rook AH. The immunopathogenesis and immunotherapy of cutaneous T cell lymphoma: Part I, pathways and targets for immune restoration and tumor eradication. J Am Acad Dermatol. 2021;84:587.
Article CAS PubMed Google Scholar
Querfeld C, Leung S, Myskowski PL, et al. Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol Res. 2018;6:900–9.
Article CAS PubMed PubMed Central Google Scholar
Gluud M, Pallesen EMH, Buus TB, et al. Malignant T cells induce skin barrier defects through cytokine-mediated JAK/STAT signaling in cutaneous T-cell lymphoma. Blood. 2023;141:180–93.
Article CAS PubMed Google Scholar
Kalliara E, Belfrage E, Gullberg U, Drott K, Ek S (2023) Spatially guided and single cell tools to map the microenvironment in cutaneous T-cell lymphoma. Cancers 2023, Vol 15, Page 2362 15:2362.
Blümel E, Willerslev-Olsen A, Gluud M, et al. Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4+ T cells in cutaneous T-cell lymphoma. Oncoimmunology. 2019. https://doi.org/10.1080/2162402X.2019.1641387/SUPPL_FILE/KONI_A_1641387_SM3398.ZIP.
Tegla CA, Herrera AM, Seffens AM, et al. Skin associated staphylococcus aureus contributes to disease progression in CTCL. Blood. 2019;134:659.
Lindahl LM, Willerslev-Olsen A, Gjerdrum LMR, et al. Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood. 2019;134:1072–83.
Article CAS PubMed PubMed Central Google Scholar
Emge DA, Bassett RL, Duvic M, Huen AO. Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in erythrodermic cutaneous T-cell lymphoma (CTCL) patients. Arch Dermatol Res. 2020;312:283–8.
Article CAS PubMed Google Scholar
Dehner CA, Ruff WE, Greiling T, Pereira MS, Redanz S, McNiff J, Girardi M, Kriegel MA. Malignant T cell activation by a bacillus species isolated from cutaneous t-cell lymphoma lesions. JID Innov. 2022;2:100084.
Stowman AM, Hsia LL, Kanner WA, Mahadevan MS, Bullock GC, Patterson JW. Multiple cutaneous lymphoproliferative disorders showing a retained tumor clone by T-cell receptor gene rearrangement analysis: a case series of four patients and review of the literature. Int J Dermatol. 2016;55:e62–71.
Article CAS PubMed Google Scholar
Hamrouni A, Fogh H, Zak Z, Odum N, Gniadecki R. Clonotypic diversity of the T-cell receptor corroborates the immature precursor origin of cutaneous T-cell lymphoma. Clin Cancer Res. 2019;25:3104–14.
Article CAS PubMed Google Scholar
Iyer A, Hennessey D, O’Keefe S, Patterson J, Wang W, Wong GKS, Gniadecki R. Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma. Blood. 2019;134:1517–27.
Klicznik MM, Morawski PA, Höllbacher B, et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci Immunol. 2019;4:8995.
Iyer A, Hennessey D, O’Keefe S, Patterson J, Wang W, Wong GKS, Gniadecki R. Branched evolution and genomic intratumor heterogeneity in the pathogenesis of cutaneous T-cell lymphoma. Blood Adv. 2020;4:2489–500.
Article CAS PubMed PubMed Central Google Scholar
Herrera A, Cheng A, Mimitou EP, et al. Multimodal single-cell analysis of cutaneous T-cell lymphoma reveals distinct subclonal tissue-dependent signatures. Blood. 2021;138:1456–64.
Article CAS PubMed PubMed Central Google Scholar
Liu X, Jin S, Hu S, et al. Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nature Communications. 2022;13:1–18.
Peiffer L, Gambichler T, Buus TB, et al. Phenotypic plasticity of malignant T cells in blood and skin of a Sézary syndrome patient revealed by single cell transcripto
Comments (0)