Emerging Trends in Artificial Intelligence in Neuro-Oncology

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689.

Article  PubMed  PubMed Central  Google Scholar 

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9.

Article  CAS  PubMed  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

Article  CAS  PubMed  Google Scholar 

Aneja S, Chang E, Omuro A. Applications of artificial intelligence in neuro-oncology. Curr Opin Neurol. 2019;32:850.

Article  PubMed  Google Scholar 

Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging applications of artificial intelligence in Neuro-Oncology. Radiology. 2019;290:607–18.

Article  PubMed  Google Scholar 

Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.

Article  PubMed  Google Scholar 

Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:64.

Article  PubMed  PubMed Central  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

Article  PubMed  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the Bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

Article  PubMed  Google Scholar 

Chang E, Joel MZ, Chang HY, Du J, Khanna O, Omuro A, et al. Comparison of radiomic feature aggregation methods for patients with multiple tumors. Sci Rep. 2021;11:9758.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inf. 2017;21:4–21.

Article  Google Scholar 

McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ, et al. The effects of changes in utilization and technological advancements of Cross-Sectional imaging on radiologist workload. Acad Radiol. 2015;22:1191–8.

Article  PubMed  Google Scholar 

Thompson RF, Valdes G, Fuller CD, Carpenter CM, Morin O, Aneja S, et al. Artificial intelligence in radiation oncology imaging. Int J Radiat Oncol Biol Phys. 2018;102:1159–61.

Article  PubMed  Google Scholar 

Kibudde S, Kavuma A, Hao Y, Zhao T, Gay H, Rheenen JV et al. Impact of Artificial Intelligence-Based Autosegmentation of Organs at Risk in Low- and Middle-Income Countries. Advances in Radiation Oncology [Internet]. 2024 [cited 2025 Feb 14];9. Available from: https://www.advancesradonc.org/article/S2452-1094%2824%2900201-X/fulltext?utm_source=chatgpt.com

Vorwerk H, Schiller R, Zink K, Engenhart-Cabillic R, Budach V, Boehmer D et al. Protection of quality and innovation in radiation oncology: The prospective multicenter trial the German Society of Radiation Oncology (DEGRO-QUIRO study). Evaluation of time, attendance of medical staff, and resources during radiotherapy with IMRT. Strahlentherapie und Onkologie [Internet]. 2014 [cited 2025 Feb 14];190. Available from: https://www.osti.gov/etdeweb/biblio/22254626

Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–9.

Article  PubMed  PubMed Central  Google Scholar 

Shi F, Hu W, Wu J, Han M, Wang J, Zhang W, et al. Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nat Commun. 2022;13:6566.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.; 2012 [cited 2023 Dec 13]. Available from: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention– MICCAI 2015 [Internet]. Cham: Springer International Publishing; 2015 [cited 2023 Aug 4]. pp. 234–41. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-319-24574-4_28

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11.

Article  CAS  PubMed  Google Scholar 

Isensee F, Jaeger PF, Full PM, Vollmuth P, Maier-Hein KH. nnU-Net for Brain Tumor Segmentation [Internet]. arXiv; 2020 [cited 2023 Dec 13]. Available from: http://arxiv.org/abs/2011.00848

Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization [Internet]. arXiv; 2018 [cited 2023 Dec 13]. Available from: http://arxiv.org/abs/1810.11654

Wang W, Chen C, Ding M, Li J, Yu H, Zha S. TransBTS: Multimodal Brain Tumor Segmentation Using Transformer [Internet]. arXiv; 2021 [cited 2023 Dec 13]. Available from: http://arxiv.org/abs/2103.04430

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN et al. Attention is All you Need. Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.; 2017 [cited 2023 Dec 13]. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 2019;50:519–28.

Article  PubMed  Google Scholar 

Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang S-G, et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol. 2018;28:3832–9.

Article  PubMed  Google Scholar 

Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology. 2019;290:479–87.

Article  PubMed  Google Scholar 

Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, et al. MGMT gene Silencing and benefit from Temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

Article  CAS  PubMed  Google Scholar 

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of Non–Small-Cell lung Cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

Article  CAS  PubMed  Google Scholar 

Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, et al. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. NeuroImage. 2010;49:1398–405.

Article  CAS  PubMed  Google Scholar 

Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ. Residual deep convolutional neural network predicts MGMT methylation status. J Digit Imaging. 2017;30:622–8.

Article  PubMed  PubMed Central  Google Scholar 

Choi YS, Bae S, Chang JH, Kang S-G, Kim SH, Kim J, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol. 2021;23:304–13.

Article  CAS  PubMed  Google Scholar 

Chang K, Bai HX, Zhou H, Su C, Bi WL, Agbodza E, et al. Residual convolutional neural network for determination of IDH status in Low- and High-grade gliomas from MR imaging. Clin Cancer Res. 2018;24:1073–81.

Article  CAS  PubMed  Google Scholar 

Ahn SJ, Kwon H, Yang J-J, Park M, Cha YJ, Suh SH, et al. Contrast-enhanced T1-weighted image radiomics of brain metastases May predict EGFR mutation status in primary lung cancer. Sci Rep. 2020;10:8905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrom QT, Shoaf ML, Cioffi G, Waite K, Kruchko C, Wen PY, et al. National-level overall survival patterns for molecularly-defined diffuse glioma types in the united States. Neuro Oncol. 2022;25:799–807.

Article  PubMed Central  Google Scholar 

Choi Y, Nam Y, Jang J, Shin N-Y, Lee YS, Ahn K-J, et al. Radiomics May increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. Eur Radiol. 2021;31:2084–93.

Article  CAS  PubMed  Google Scholar 

Fathi Kazerooni A, Saxena S, Toorens E, Tu D, Bashyam V, Akbari H, et al. Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma. Sci Rep. 2022;12:8784.

Comments (0)

No login
gif