How deep is the brain? The shallow brain hypothesis

Hegde, J. & Felleman, D. J. Reappraising the functional implications of the primate visual anatomical hierarchy. Neuroscientist 13, 416–421 (2007).

Article  PubMed  Google Scholar 

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

Article  CAS  PubMed  Google Scholar 

Stokel-Walker, C. & Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 614, 214–216 (2023).

Article  CAS  PubMed  Google Scholar 

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).

Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

Article  Google Scholar 

Xu, K. et al. Show, attend and tell: neural image caption generation with visual attention. In 32nd Int. Conf. on Machine Learning (eds F. Bach. & D. Blei) 2048–2057 (2015).

Fukushima, K. Neocognitron—a self-organizing neural network model for a mechanism of pattern-recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980).

Article  CAS  PubMed  Google Scholar 

Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028.e14 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guclu, U. & van Gerven, M. A. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A. & Oliva, A. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schrimpf, M. et al. The neural architecture of language: integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2015646118 (2021).

Article  Google Scholar 

Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).

Article  PubMed  Google Scholar 

Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

Article  CAS  PubMed  Google Scholar 

Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

Article  CAS  PubMed  Google Scholar 

Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

Article  PubMed  Google Scholar 

Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B Biol. Sci. 216, 427–459 (1982).

Article  CAS  PubMed  Google Scholar 

Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz machine. Neural Comput. 7, 889–904 (1995).

Article  CAS  PubMed  Google Scholar 

Dora, S., Bohte, S. M. & Pennartz, C. M. A. Deep gated Hebbian predictive coding accounts for emergence of complex neural response properties along the visual cortical hierarchy. Front. Comput. Neurosci. 15, 666131 (2021).

Article  PubMed  PubMed Central  Google Scholar 

McDermott, J. H., Wrobleski, D. & Oxenham, A. J. Recovering sound sources from embedded repetition. Proc. Natl Acad. Sci. USA 108, 1188–1193 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mill, R. W., Bohm, T. M., Bendixen, A., Winkler, I. & Denham, S. L. Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput. Biol. 9, e1002925 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanai, R., Komura, Y., Shipp, S. & Friston, K. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140169 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R. & Friston, K. The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cereb. Cortex 25, 3434–3445 (2015).

Article  PubMed  Google Scholar 

Rikhye, R. V., Wimmer, R. D. & Halassa, M. M. Toward an integrative theory of thalamic function. Annu. Rev. Neurosci. 41, 163–183 (2018).

Article  CAS  PubMed  Google Scholar 

Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

Article  CAS  PubMed  Google Scholar 

Minsky, M. & Papert, S. Perceptrons; An Introduction to Computational Geometry (MIT Press, 1969).

Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

Article  CAS  PubMed  Google Scholar 

Tsao, D. Y., Schweers, N., Moeller, S. & Freiwald, W. A. Patches of face-selective cortex in the macaque frontal lobe. Nat. Neurosci. 11, 877–879 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hegde, J. & Van Essen, D. C. A comparative study of shape representation in macaque visual areas V2 and V4. Cereb. Cortex 17, 1100–1116 (2007).

Article  PubMed  Google Scholar 

Rockland, K. S. & Pandya, D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179, 3–20 (1979).

Article  CAS  PubMed  Google Scholar 

Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Markov, N. T. & Kennedy, H. The importance of being hierarchical. Curr. Opin. Neurobiol. 23, 187–194 (2013).

Article  CAS  PubMed  Google Scholar 

D’Souza, R. D. et al. Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat. Commun. 13, 503 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L. G. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681–3691 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burkhalter, A., D’Souza, R. D., Ji, W. & Meier, A. M. Integration of feedforward and feedback information streams in the modular architecture of mouse visual cortex. Annu. Rev. Neurosci. 46, 259–280 (2023).

Article  PubMed  Google Scholar 

Coogan, T. A. & Burkhalter, A. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13, 3749–3772 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

Article  CAS  PubMed  Google Scholar 

Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

Comments (0)

No login
gif