Cerebellar circuit computations for predictive motor control

Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, 1967).

Cisek, P. Evolution of behavioural control from chordates to primates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200522 (2022). This review discusses neural function through the lens of evolutionary transitions that require novel computations.

Article  PubMed  Google Scholar 

Shadmehr, R. & Mussa-Ivaldi S. Biological Learning and Control (MIT Press, 2023). This book provides an invaluable introduction to computational approaches to studying biological motor control.

Holmes, G. The Croonian Lectures on the clinical symptoms of cerebellar disease and their interpretation. Lecture I. 1922. Cerebellum 6, 142–147 (2007). This work presents a fascinating and thorough description of motor deficits that emerged in World War I soldiers who suffered gunshot wounds to the cerebellum.

PubMed  Google Scholar 

Shadmehr, R. Population coding in the cerebellum: a machine learning perspective. J. Neurophysiol. 124, 2022–2051 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Spong, M. W. & Fujita, M. in The Impact of Control Technology: Overview, Success Stories, and Research Challenges (eds Samad, T. and Annaswamy, A.) 49–56 (IEEE Control Systems Society, 2011).

Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996). This paper beautifully describes how forward models can be used to solve many motor control problems common in biological systems.

Article  PubMed  Google Scholar 

Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

Article  CAS  PubMed  Google Scholar 

Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).

Article  CAS  PubMed  Google Scholar 

Cullen, K. E. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci. 46, 986–1002 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. Trends Neurosci. 26, 222–227 (2003). This perspective article proposes that feedforward control principles underlying DEC could be extended to other motor control domains.

Article  CAS  PubMed  Google Scholar 

Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996).

Article  CAS  PubMed  Google Scholar 

Bastian, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649 (2006).

Article  CAS  PubMed  Google Scholar 

McCormick, D. A. & Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223, 296–299 (1984).

Article  CAS  PubMed  Google Scholar 

Moyer, J. R., Deyo, R. A. & Disterhoft, J. F. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 129, 523–532 (2015).

Article  PubMed  Google Scholar 

Kalmbach, B. E., Ohyama, T., Kreider, J. C., Riusech, F. & Mauk, M. D. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Mem. 16, 86–95 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Medina, J. F., Nores, W. L., Ohyama, T. & Mauk, M. D. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10, 717–724 (2000).

Article  CAS  PubMed  Google Scholar 

Jirenhed, D.-A., Bengtsson, F. & Hesslow, G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J. Neurosci. 27, 2493–2502 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jirenhed, D.-A. & Hesslow, G. Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 15, 526–534 (2016).

Article  PubMed  Google Scholar 

Halverson, H. E., Khilkevich, A. & Mauk, M. D. Relating cerebellar Purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J. Neurosci. 35, 7813–7832 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ten Brinke, M. M. et al. Dynamic modulation of activity in cerebellar nuclei neurons during Pavlovian eyeblink conditioning in mice. eLife 6, e28132 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).

Article  CAS  PubMed  Google Scholar 

Rasmussen, A., Jirenhed, D.-A., Wetmore, D. Z. & Hesslow, G. Changes in complex spike activity during classical conditioning. Front. Neural Circuits 8, 90 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ohmae, S. & Medina, J. F. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

ten Brinke, M. M. et al. Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep. 13, 1977–1988 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Boele, H.-J. et al. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. Sci. Adv. 4, eaas9426 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vilis, T. & Hore, J. in Progress in Brain Research Vol. 64 (eds. Freund, H.-J., Büttner, U., Cohen, B. & Noth, J.) 207–215 (Elsevier, 1986).

Flament, D., Hore, J. & Vilis, T. Braking of fast and accurate elbow flexions in the monkey. J. Physiol. 349, 195–202 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vilis, T. & Hore, J. Effects of changes in mechanical state of limb on cerebellar intention tremor. J. Neurophysiol. 40, 1214–1224 (1977).

Article  CAS  PubMed  Google Scholar 

Pasalar, S., Roitman, A. V., Durfee, W. K. & Ebner, T. J. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat. Neurosci. 9, 1404–1411 (2006).

Article  CAS  PubMed  Google Scholar 

Robinson, D. A. The use of control systems analysis in the neurophysiology of eye movements. Annu. Rev. Neurosci. 4, 463–503 (1981).

Article  CAS  PubMed  Google Scholar 

Robinson, F. R. & Fuchs, A. F. The role of the cerebellum in voluntary eye movements. Annu. Rev. Neurosci. 24, 981–1004 (2001).

Article  CAS  PubMed  Google Scholar 

Smith, M. A., Brandt, J. & Shadmehr, R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403, 544–549 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawato, M. & Gomi, H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol. Cybern. 68, 95–103 (1992).

Article  CAS  PubMed  Google Scholar 

Flash, T. & Sejnowski, T. J. Computational approaches to motor control. Curr. Opin. Neurobiol. 11, 655–662 (2001).

Article  CAS  PubMed 

Comments (0)

No login
gif