Structural neural plasticity evoked by rapid-acting antidepressant interventions

DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

Article  CAS  PubMed  Google Scholar 

Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

Article  CAS  PubMed  Google Scholar 

Luscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46 (2004).

Article  CAS  PubMed  Google Scholar 

Phoumthipphavong, V., Barthas, F., Hassett, S. & Kwan, A. C. Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 3, ENEURO.0133-0115.2016 (2016).

Article  Google Scholar 

Pryazhnikov, E. et al. Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine. Sci. Rep. 8, 6464 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ng, L. H. L. et al. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl. Psychiatry 8, 272 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364, eaat8078 (2019). This study demonstrates that ketamine restores dendritic spines eliminated owing to chronic corticosterone treatment and that disrupting ketamine-induced new spines blocks the ability of the drug to alleviate motivated escape behaviour in mice.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544.e4 (2021). This work demonstrates in vivo that a single dose of the classic psychedelic psilocybin has rapid and long-lasting effects on structural neural plasticity in the mouse medial frontal cortex.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jefferson, S. J. et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 48, 1257–1266 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).

Article  CAS  PubMed  Google Scholar 

Lu, J. et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol. Psychiatry 26, 6237–6252 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. Neuron 101, 774–778 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624 (2020).

Article  CAS  PubMed  Google Scholar 

McClure-Begley, T. D. & Roth, B. L. The promises and perils of psychedelic pharmacology for psychiatry. Nat. Rev. Drug Discov. 21, 463–473 (2022).

Article  CAS  PubMed  Google Scholar 

Thompson, S. M. et al. An excitatory synapse hypothesis of depression. Trends Neurosci. 38, 279–294 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ousdal, O. T. et al. The neurobiological effects of electroconvulsive therapy studied through magnetic resonance: what have we learned, and where do we go? Biol. Psychiatry 91, 540–549 (2022).

Article  PubMed  Google Scholar 

Jannati, A., Oberman, L. M., Rotenberg, A. & Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 48, 191–208 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Zarate, C. A. Jr. et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).

Article  CAS  PubMed  Google Scholar 

Husain, M. M. et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J. Clin. Psychiatry 65, 485–491 (2004).

Article  PubMed  Google Scholar 

Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry 179, 132–141 (2022).

Article  PubMed  Google Scholar 

Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

Article  CAS  PubMed  Google Scholar 

Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).

Article  CAS  PubMed  Google Scholar 

Oliva, H. N. P. et al. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. Mol. Psychiatry 29, 2873–2885 (2024).

Article  PubMed  Google Scholar 

Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012). This study reports synapse loss and decreased expression of synapse-function-related genes in the dorsolateral prefrontal cortex of individuals with MDD.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feyissa, A. M., Chandran, A., Stockmeier, C. A. & Karolewicz, B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 70–75 (2009).

Article  CAS  PubMed  Google Scholar 

Holmes, S. E. et al. Low synaptic density is associated with depression severity and network alterations. Nat. Commun. 10, 1529 (2019). This study provides the first in vivo evidence that decreased synaptic density, measured via PET imaging with the SV2A radioligand, is linked to altered network function and depressive symptoms.

Article  PubMed  PubMed Central  Google Scholar 

Hasler, G. et al. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 64, 193–200 (2007).

Article 

Comments (0)

No login
gif