Protective effect of Luffa cylindrica Roemer against dexamethasone-induced muscle atrophy in primary rat skeletal muscle cells

Alge CS, Hauck SM, Priglinger SG, Kampik A, Ueffing M (2006) Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 5:862–878

Article  CAS  PubMed  Google Scholar 

Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A (2022) The beneficial therapeutic effects of plant-derived natural products for the treatment of Sarcopenia. J Cachexia Sarcopenia Muscle 13:2772–2790

Article  PubMed  PubMed Central  Google Scholar 

Boscolo Sesillo F, Wong M, Cortez A, Alperin M (2020) Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Res 43:101684

Article  CAS  PubMed  Google Scholar 

Castillero E, Alamdari N, Lecker SH, Hasselgren PO (2013) ‘Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes’, Metabolism, 62: 1495 – 502

Chen C, Yang JS, Lu CC, Chiu YJ, Chen HC, Chung MI, Wu YT, Chen FA (2020) ‘Effect of Quercetin on Dexamethasone-Induced C2C12 Skeletal Muscle Cell Injury’, Molecules, 25

Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296:R1071–R1077

Article  CAS  PubMed  Google Scholar 

Dubey S, Saha S, Kaithwas G, Saraf SA (2015) Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract. Indian J Pharmacol 47:644–648

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335

Article  CAS  PubMed  Google Scholar 

Guerriero V Jr., Florini JR (1980) ‘Dexamethasone effects on myoblast proliferation and differentiation’, Endocrinology, 106: 1198 – 202

Gutierrez-Salmean G, Ciaraldi TP, Nogueira L, Barboza J, Taub PR, Hogan MC, Henry RR, Meaney E, Villarreal F, Ceballos G, Ramirez-Sanchez I (2014) Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. J Nutr Biochem 25:91–94

Article  CAS  PubMed  Google Scholar 

Hakim M, Hage W, Lovering RM, Moorman CT 3rd, Curl LA (2005) and P. G. De Deyne. ‘Dexamethasone and recovery of contractile tension after a muscle injury’, Clin Orthop Relat Res, 439: 235 – 42

Han DS, Yang WS, Kao TW (2017) Dexamethasone Treatment at the myoblast stage enhanced C2C12 myocyte differentiation. Int J Med Sci 14:434–443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasselgren PO (1999) Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 2:201–205

Article  CAS  PubMed  Google Scholar 

Hermans G, Van den Berghe G (2015) Clinical review: intensive care unit acquired weakness. Crit Care 19:274

Article  PubMed  PubMed Central  Google Scholar 

Hong KB, Lee HS, Hong JS, Kim DH, Moon JM, Park Y (2020) Effects of tannase-converted green tea extract on skeletal muscle development. BMC Complement Med Ther 20:47

Article  PubMed  PubMed Central  Google Scholar 

Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843

Article  CAS  PubMed  Google Scholar 

Kao TH, Huang CW, Chen BH (2012) ‘Functional components in Luffa cylindrica and their effects on anti-inflammation of macrophage cells’, Food Chem, 135: 386 – 95

Khajuria A, Gupta A, Garai S, Wakhloo BP (2007) Immunomodulatory effects of two sapogenins 1 and 2 isolated from Luffa cylindrica in Balb/C mice. Bioorg Med Chem Lett 17:1608–1612

Article  CAS  PubMed  Google Scholar 

Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J, Liu J (2016) Mitochondrial dysfunction launches Dexamethasone-Induced skeletal muscle atrophy via AMPK/FOXO3 signaling. Mol Pharm 13:73–84

Article  CAS  PubMed  Google Scholar 

Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:E363–E371

Article  CAS  PubMed  Google Scholar 

Marcell TJ (2003) Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci 58:M911–M916

Article  PubMed  Google Scholar 

McRae N, Forgan L, McNeill B, Addinsall A, McCulloch D, Van der Poel C, Stupka N (2017) ‘Glucocorticoids Improve Myogenic Differentiation In Vitro by Suppressing the Synthesis of Versican, a Transitional Matrix Protein Overexpressed in Dystrophic Skeletal Muscles’, Int J Mol Sci, 18

Mishra S, Cosentino C, Tamta AK, Khan D, Srinivasan S, Ravi V, Abbotto E, Arathi BP, Kumar S, Jain A, Ramaian AS, Kizkekra SM, Rajagopal R, Rao S, Krishna S, Asirvatham-Jeyaraj N, Haggerty ER, SilBerman DM, Kurland IJ, Veeranna RP, Jayavelu T, Bruzzone S, Mostoslavsky R, Sundaresan NR (2022) Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling. Nat Commun 13:5415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murata M, Kosaka R, Kurihara K, Yamashita S, Tachibana H (2016) Delphinidin prevents disuse muscle atrophy and reduces stress-related gene expression. Biosci Biotechnol Biochem 80:1636–1640

Article  CAS  PubMed  Google Scholar 

Musaro A, Carosio S (2017) Isolation and culture of Satellite cells from mouse skeletal muscle. Methods Mol Biol 1553:155–167

Article  CAS  PubMed  Google Scholar 

Otsuka Y, Egawa K, Kanzaki N, Izumo T, Rogi T, Shibata H (2019) Quercetin glycosides prevent dexamethasone-induced muscle atrophy in mice. Biochem Biophys Rep 18:100618

PubMed  PubMed Central  Google Scholar 

Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin J, Du R, Yang YQ, Zhang HQ, Li Q, Liu L, Guan H, Hou J, An XR (2013) Dexamethasone-induced skeletal muscle atrophy was associated with upregulation of myostatin promoter activity. Res Vet Sci 94:84–89

Article  CAS  PubMed  Google Scholar 

Rodriguez J, Pierre N, Naslain D, Bontemps F, Ferreira D, Priem F, Deldicque L, Francaux M (2017) Urolithin B, a newly identified regulator of skeletal muscle mass. J Cachexia Sarcopenia Muscle 8:583–597

Article  PubMed  PubMed Central  Google Scholar 

Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

Article  CAS  PubMed  Google Scholar 

Shi Y, Zhang ZW, Du MM, Wu J, Li JX (2023) Saponin extract from Achyranthes bidentata Blume alleviates disuse-induced muscle atrophy through PI3K/Akt signaling pathway. J Ethnopharmacol 312:116458

Article  CAS  PubMed  Google Scholar 

Smith J, Merrick D (2010) Embryonic skeletal muscle microexplant culture and isolation of skeletal muscle stem cells. Methods Mol Biol 633:29–56

Article  CAS  PubMed  Google Scholar 

Takisawa S, Funakoshi T, Yatsu T, Nagata K, Aigaki T, Machida S, Ishigami A (2019) Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci Rep 9:4702

Article  PubMed  PubMed Central  Google Scholar 

Troncoso R, Paredes F, Parra V, Gatica D, Vasquez-Trincado C, Quiroga C, Bravo-Sagua R, Lopez-Crisosto C, Rodriguez AE, Oyarzun AP, Kroemer G and S. Lavandero. 2014. ‘Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance’, Cell Cycle, 13: 2281–2295

Wang M, Jiang R, Liu J, Xu X, Sun G, Zhao D, Sun L (2021) ‘20(s)–ginseonside–Rg3 modulation of AMPK/FoxO3 signaling to attenuate mitochondrial dysfunction in a dexamethasone–injured C2C12 myotube–based model of skeletal atrophy in vitro’, Mol Med Rep, 23

Zhang L, Yue Y, Shi M, Tian M, Ji J, Liao X, Hu X, Chen F (2020) Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem 320:126648

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif