Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle

Berlanga J, Cibrian D, Guillen I, Freyre F, Alba JS et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond) 109:83–95

Article  CAS  PubMed  Google Scholar 

Bouitbir J, Charles AL, Rasseneur L, Dufour S, Piquard F et al (2011) Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress. J Appl Physiol (1985) 111:1477–1483

Article  CAS  PubMed  Google Scholar 

Bowden Davies KA, Pickles S, Sprung VS, Kemp GJ, Alam U et al (2019) Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab 10:2042018819888824

Article  PubMed  PubMed Central  Google Scholar 

Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH et al (2016) Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol 238:470–482

Article  CAS  PubMed  Google Scholar 

Cozzoli A, Nico B, Sblendorio VT, Capogrosso RF, Dinardo MM et al (2011) Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice. Pharmacol Res 64:482–492

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Oliveira MG, de Medeiros ML, Tavares EBG, Monica FZ, Antunes E (2020) Methylglyoxal, a reactive glucose metabolite, induces bladder overactivity in addition to inflammation in mice. Front Physiol 11:290

Article  PubMed  PubMed Central  Google Scholar 

Du H, Ma Y, Wang X, Zhang Y, Zhu L et al (2023) Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling. Am J Physiol Endocrinol Metab 324:E279–E287

Article  CAS  PubMed  Google Scholar 

Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I et al (2023) Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 42:78

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egawa T, Hayashi T (2022) Association of glycative stress with motor and muscle function. Front Physiol 13:855358

Article  PubMed  PubMed Central  Google Scholar 

Egawa T, Tsuda S, Goto A, Ohno Y, Yokoyama S et al (2017) Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 117:21–29

Article  CAS  PubMed  Google Scholar 

Egawa T, Ohno Y, Yokoyama S, Yokokawa T, Tsuda S et al (2019) The protective effect of Brazilian propolis against glycation stress in mouse skeletal muscle. Foods 8:439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egawa T, Ogawa T, Yokokawa T, Kido K, Goto K et al (2022) Methylglyoxal reduces molecular responsiveness to 4 weeks of endurance exercise in mouse plantaris muscle. J Appl Physiol (1985) 132:477–488

Article  CAS  PubMed  Google Scholar 

Endo Y, Nourmahnad A, Sinha I (2020) Optimizing skeletal muscle anabolic response to resistance training in aging. Front Physiol 11:874

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez AM, Hoffman JR, Stout JR, Fukuda DH, Willoughby DS (2016) Intramuscular anabolic signaling and endocrine response following resistance exercise: implications for muscle hypertrophy. Sports Med 46:671–685

Article  PubMed  Google Scholar 

Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK et al (2011) Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 25:1028–1039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

Article  PubMed  Google Scholar 

Groener JB, Oikonomou D, Cheko R, Kender Z, Zemva J et al (2019) Methylglyoxal and advanced glycation end products in patients with diabetes - what we know so far and the missing links. Exp Clin Endocrinol Diabetes 127:497–504

Article  CAS  PubMed  Google Scholar 

Hansen-Smith FM, Blackwell LH, Joswiak GR (1992) Expression of muscle capillary alkaline phosphatase is affected by hypoxia. J Appl Physiol (1985) 73:776–780

Article  CAS  PubMed  Google Scholar 

Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

Article  CAS  PubMed  Google Scholar 

Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

Article  CAS  PubMed  Google Scholar 

Higashida K, Inoue S, Takeuchi N, Ato S, Ogasawara R et al (2021) Basal and resistance exercise-induced increase in protein synthesis is impaired in skeletal muscle of iron-deficient rats. Nutrition 91–92, 111389

Hornberger TA, Chien S (2006) Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 97:1207–1216

Article  CAS  PubMed  Google Scholar 

Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28:901–904

Article  CAS  PubMed  Google Scholar 

Kalapos MP (2013) Where does plasma methylglyoxal originate from? Diabetes Res Clin Pract 99:260–271

Article  CAS  PubMed  Google Scholar 

Kanazashi M, Tanaka M (2023) Acute effect of electrical stimulation on muscle protein synthesis and break-down in the soleus muscle of hindlimb unloaded rats. Biomed Res 44:209–218

Article  CAS  PubMed  Google Scholar 

Kanazashi M, Tanaka M, Nakanishi R, Maeshige N, Fujino H (2019) Effects of astaxanthin supplementation and electrical stimulation on muscle atrophy and decreased oxidative capacity in soleus muscle during hindlimb unloading in rats. J Physiol Sci 69:757–767

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanazashi M, Tanaka M, Maezawa T, Fujino H (2020) Effects of reloading after chronic neuromuscular inactivity on the three-dimensional capillary architecture in rat soleus muscle. Acta Histochem 122:151617

Article  CAS  PubMed  Google Scholar 

Kato M, Kubo A, Sugioka Y, Mitsui R, Fukuhara N et al (2017) Relationship between advanced glycation end-product accumulation and low skeletal muscle mass in Japanese men and women. Geriatr Gerontol Int 17:785–790

Article  PubMed  Google Scholar 

Lai SWT, Lopez Gonzalez EJ, Zoukari T, Ki P, Shuck SC (2022) Methylglyoxal and its adducts: induction, repair, and association with disease. Chem Res Toxicol 35:1720–1746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Parveen A, Do MH, Kang MC, Yumnam S et al (2020) Molecular mechanisms of methylglyoxal-induced aortic endothelial dysfunction in human vascular endothelial cells. Cell Death Dis 11:403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Randell E, Han Y, Adeli K, Krahn J et al (2011) Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin Biochem 44:307–311

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif