Abbot EL, McCormack JG, Reynet C, Hassall DG, Buchan KW, Yeaman SJ (2005) Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS J 272(12):3004–3014. https://doi.org/10.1111/j.1742-4658.2005.04713.x
Article CAS PubMed Google Scholar
Abdelmoez AM, Puig S, Smith L, Gabriel JA, Savikj BM, Dollet M, Pillon L, N. J (2019) Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00540.2019
Article PubMed PubMed Central Google Scholar
Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse ML, Fölsch UR, Schäfer H (2003) Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22(21):3243–3251. PMID: 12761494. https://doi.org/10.1038/sj.onc.1206390
Bhat UG, Halasi M, Gartel AL (2009) FoxM1 is a general target for proteasome inhibitors. PLoS ONE 4(8):e6593. https://doi.org/10.1371/journal.pone.0006593
Article CAS PubMed PubMed Central Google Scholar
Boutagy NE, Fowler JW, Grabinska KA, Cardone R, Sun Q, Vazquez KR, Sessa WC (2023) TNFalpha increases the degradation of pyruvate dehydrogenase kinase 4 by the lon protease to support proinflammatory genes. Proc Natl Acad Sci U S A 120(38):e2218150120. https://doi.org/10.1073/pnas.2218150120
Article CAS PubMed PubMed Central Google Scholar
Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J, 329 (Pt 1), 191–196. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9405293
Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the crossover concept. J Appl Physiol (1985) 76(6):2253–2261. https://doi.org/10.1152/jappl.1994.76.6.2253
Article CAS PubMed Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797
Article CAS PubMed Google Scholar
Cao W, Zeng Z, Pan R, Wu H, Zhang X, Chen H, Lei S (2021) Hypoxia-related gene FUT11 promotes pancreatic Cancer Progression by maintaining the Stability of PDK1. Front Oncol 11:675991. https://doi.org/10.3389/fonc.2021.675991
Article CAS PubMed PubMed Central Google Scholar
de Luna N, Gallardo E, Soriano M, Dominguez-Perles R, de la Torre C, Rojas-Garcia R, Illa I (2006) Absence of dysferlin alters myogenin expression and delays human muscle differentiation in vitro. J Biol Chem 281(25):17092–17098. https://doi.org/10.1074/jbc.M601885200
Article CAS PubMed Google Scholar
De Palma S, Ripamonti M, Vigano A, Moriggi M, Capitanio D, Samaja M, Gelfi C (2007) Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue. J Proteome Res 6(5):1974–1984. https://doi.org/10.1021/pr060614o
Article CAS PubMed Google Scholar
Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S (2018) Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00311.2017
Dong X, Zhao R, Li Y, Yu Q, Chen X, Hu X, Chen L (2019) Maduramicin inactivation of akt impairs autophagic flux leading to accumulated autophagosomes-dependent apoptosis in skeletal myoblast cells. Int J Biochem Cell Biol 114:105573. https://doi.org/10.1016/j.biocel.2019.105573
Article CAS PubMed PubMed Central Google Scholar
Dunford EC, Herbst EA, Jeoung NH, Gittings W, Inglis JG, Vandenboom R, Peters SJ (2011) PDH activation during in vitro muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation. Am J Physiol Regul Integr Comp Physiol 300(6):R1487–1493. https://doi.org/10.1152/ajpregu.00498.2010
Article CAS PubMed Google Scholar
Galcheva-Gargova Z, Theroux SJ, Davis RJ (1995) The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene, 11(12), 2649–2655. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8545122
Gamboa JL, Andrade FH (2010) Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. Am J Physiol Regul Integr Comp Physiol 298(3):R575–583. https://doi.org/10.1152/ajpregu.00320.2009
Article CAS PubMed Google Scholar
Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM (1995) Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 270(48):28989–28994. https://doi.org/10.1074/jbc.270.48.28989
Article CAS PubMed Google Scholar
Gudiksen A, Bertholdt L, Stankiewicz T, Villesen I, Bangsbo J, Plomgaard P, Pilegaard H (2018) Training state and fasting-induced PDH regulation in human skeletal muscle. Pflugers Arch 470(11):1633–1645. https://doi.org/10.1007/s00424-018-2164-6
Article CAS PubMed Google Scholar
J Klionsky D, Abdelmohsen J, Abe A, Abedin J M, Abeliovich H, Acevedo Arozena A, M Zughaier S (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356
Article PubMed PubMed Central Google Scholar
Jan V, Mis K, Nikolic N, Dolinar K, Petric M, Bone A, Pirkmajer S (2021) Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. PLoS ONE 16(2):e0247377. https://doi.org/10.1371/journal.pone.0247377
Article CAS PubMed PubMed Central Google Scholar
Kelley D, Mitrakou A, Marsh H, Schwenk F, Benn J, Sonnenberg G et al (1988) Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest 81(5):1563–1571. https://doi.org/10.1172/JCI113489
Article CAS PubMed PubMed Central Google Scholar
Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. https://doi.org/10.1016/j.cmet.2006.02.002
Article CAS PubMed Google Scholar
Klyuyeva A, Tuganova A, Kedishvili N, Popov KM (2019) Tissue-specific kinase expression and activity regulate flux through the pyruvate dehydrogenase complex. J Biol Chem 294(3):838–851. https://doi.org/10.1074/jbc.RA118.006433
Article CAS PubMed Google Scholar
Kolobova E, Tuganova A, Boulatnikov I, Popov KM (2001) Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J 358(Pt 1):69–77. https://doi.org/10.1042/0264-6021:3580069
Article CAS PubMed PubMed Central Google Scholar
Korotchkina LG, Patel MS (2001) Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 276(40):37223–37229. https://doi.org/10.1074/jbc.M103069200
Article CAS PubMed Google Scholar
Le Moine CM, Morash AJ, McClelland GB (2011) Changes in HIF-1alpha protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia. Am J Physiol Regul Integr Comp Physiol 301(4):R1098–1104. https://doi.org/10.1152/ajpregu.00070.2011
Article CAS PubMed Google Scholar
LeBlanc PJ, Peters SJ, Tunstall RJ, Cameron-Smith D, Heigenhauser GJ (2004) Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle. J Physiol 557(Pt 2):559–570. https://doi.org/10.1113/jphysiol.2003.058263
Article CAS PubMed PubMed Central Google Scholar
Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12(23):3663–3674. https://doi.org/10.1101/gad.12.23.3663
Comments (0)