Darzi SA, Munz Y. The impact of minimally invasive surgical techniques. Annu Rev Med. 2004;55:223–37. https://doi.org/10.1146/annurev.med.55.091902.105248.
Vierra M. Minimally invasive surgery. Annu Rev Med. 1995;46:147–58. https://doi.org/10.1146/annurev.med.46.1.147.
Cuschieri A, Dubois F, Mouiel J, Mouret P, Becker H, Buess G, Trede M, Troidl H. The european experience with laparoscopic cholecystectomy. Am J Surg. 1991;161(3):385–7. https://doi.org/10.1016/0002-9610(91)90603-B.
Franklin ME Jr, Rosenthal D, Abrego-Medina D, Dorman JP, Glass JL, Norem R, Diaz A. Prospective comparison of open vs. laparoscopic colon surgery for carcinoma. Five-year results. Dis Colon Rectum. 1996;39(10):35–46. https://doi.org/10.1007/BF020538045.
Zelhart M, Kaiser AM. Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice. Surg Endosc. 2018;32(1):24–38. https://doi.org/10.1007/s00464-017-5796-2.
Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–55. https://doi.org/10.1007/s00464-018-6079-2.
Mendes V, Bruyere F, Escoffre JM, Binet A, Lardy H, Marret H, Marchal F, Hebert T. Experience implication in subjective surgical ergonomics comparison between laparoscopic and robot-assisted surgeries. J Robot Surg. 2020;14(1):115–21. https://doi.org/10.1007/s11701-019-00933-2.
Lin L, Xu C, Shi Y, Zhou C, Zhu M, Chai G, Xie L. Preliminary clinical experience of robot-assisted surgery in treatment with genioplasty. Sci Rep. 2021;11(1):6365. https://doi.org/10.1038/s41598-021-85889-w.
Cianci S, Rosati A, Rumolo V, Gueli Alletti S, Gallotta V, Turco LC, Corrado G, Vizzielli G, Fagotti A, Fanfani F, Scambia G, Uccella S. Robotic single-port platform in general, urologic, and gynecologic surgeries: a systematic review of the literature and meta-analysis. World J Surg. 2019;43(10):2401–19. https://doi.org/10.1007/s00268-019-05049-0.
Roh CK, Choi S, Seo WJ, Cho M, Choi YY, Son T, Hyung WJ, Kim HI. Comparison of surgical outcomes between integrated robotic and conventional laparoscopic surgery for distal gastrectomy: a propensity score matching analysis. Sci Rep. 2020;10(1):485. https://doi.org/10.1038/s41598-020-57413-z.
Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, Menon M, Montorsi F, Patel VR, Stolzenburg JU, Van der Poel H, Wilson TG, Zattoni F, Mottrie A. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):405–17. https://doi.org/10.1016/j.eururo.2012.05.045.
Park JS, Choi GS, Park SY, Kim HJ, Ryuk JP. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg. 2012;99:1219–26. https://doi.org/10.1002/bjs.8841.
Gosrisirikul C, Don Chang K, Raheem AA, Rha KH. New era of robotic surgical systems. Asian J Endosc Surg. 2018;11(4):291–9. https://doi.org/10.1111/ases.12660.
Mayor N, Coppola ASJ, Challacombe B. Past, present and future of surgical robotics. Trends in Urology & Men’s Health. 2022;13(1):7–10. https://doi.org/10.1002/tre.834.
Morton J, Hardwick RH, Tilney HS, et al. Preclinical evaluation of the Versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg Endosc. 2021;35:2169–77. https://doi.org/10.1007/s00464-020-07622-4.
Hares L, Roberts P, Marshall K, Slack M. Using end-user feedback to optimize the design of the Versius Surgical System, a new robot-assisted device for use in minimal access surgery. BMJ Surg Interv Health Technol. 2019;1(1):e000019. https://doi.org/10.1136/bmjsit-2019-000019.
Haig F, Medeiros ACB, Chitty K, Slack M. Usability assessment of Versius, a new robot-assisted surgical device for use in minimal access surgery. BMJ Surg Interv Health Technol. 2020;2(1):e000028. https://doi.org/10.1136/bmjsit-2019-000028.
Wehrmann S, Tischendorf K, Mehlhorn T, Lorenz A, Gündel M, Rudolph H, Mirow L. Clinical implementation of the Versius robotic surgical system in visceral surgery-A single centre experience and review of the first 175 patients. Surg Endosc. 2023;37(1):528–34. https://doi.org/10.1007/s00464-022-09526-x.
Raffaelli M, Gallucci P, Voloudakis N, Pennestrì F, De Cicco R, Arcuri G, De Crea C, Bellantone R. The new robotic platform Hugo™ RAS for lateral transabdominal adrenalectomy: a first world report of a series of five cases. Updates Surg. 2023;75(1):217–25. https://doi.org/10.1007/s13304-022-01410-6.
Gueli AS, Chiantera V, Arcuri G, Gioè A, Oliva R, Monterossi G, Fanfani F, Fagotti A, Scambia G. Introducing the New Surgical Robot HUGO™ RAS: system description and docking settings for gynecological surgery. Front Oncol. 2022;12:898060. https://doi.org/10.3389/fonc.2022.898060.
Totaro A, Campetella M, Bientinesi R, Gandi C, Palermo G, Russo A, Aceto P, Bassi P, Sacco E. The new surgical robotic platform HUGO™ RAS: System description and docking settings for robot-assisted radical prostatectomy. Urologia. 2022;89(4):603–9. https://doi.org/10.1177/03915603221107855.
Kastelan Z, Hudolin T, Kulis T, Knezevic N, Penezic L, Maric M, Zekulic T. Upper urinary tract surgery and radical prostatectomy with Senhance® robotic system: single center experience-first 100 cases. Int J Med Robot. 2021;17(4):e2269. https://doi.org/10.1002/rcs.2269.
Chang KD, Abdel Raheem A, Choi YD, Chung BH, Rha KH. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–8. https://doi.org/10.1111/bju.14245.
Liatsikos E, Tsaturyan A, Kyriazis I, Kallidonis P, Manolopoulos D, Magoutas A. Market potentials of robotic systems in medical science: analysis of the Avatera robotic system. World J Urol. 2022;40(1):283–9. https://doi.org/10.1007/s00345-021-03809-z.
Hinata N, Yamaguchi R, Kusuhara Y, et al. Hinotori surgical robot system, a novel robot-assisted surgical platform: preclinical and clinical evaluation. Int J Urol. 2022;29(10):1213–20. https://doi.org/10.1111/iju.14973.
MicroPort. MicroPort® Toumai® Surgical Robot Receives NMPA Approval, Becoming the First Commercialized Four-Arm Laparoscopic Surgical Robot Developed in China. https://microport.com/news/microport-toumai-surgical-robot-receives-nmpa-approval-becoming-the-first-commercialized-four-arm-laparoscopic-surgical-robot-developed-in-china. Accessed 27 Jan 2022.
Morelli L, et al. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot Comp Assist Surg. 2016;12:724–34. https://doi.org/10.1002/rcs.1713.
Lee SR, Roh A, Jeong K, Kim SH, Chae HC, Moon HS. First report comparing the two types of single-incision robotic sacrocolpopexy: single site using the da Vinci Xi or Si system and single port using the da Vinci SP system. Taiwan J Obstet Gynecol. 2021;60(1):60–5. https://doi.org/10.1016/j.tjog.2020.10.007.
Kim JM, Lee SM, Seol A, Song JY, Ryu KJ, Lee S, Park HT, Cho HW, Min KJ, Hong JH, et al. Comparison of surgical outcomes between single-port laparoscopic surgery and da vinci single-port robotic surgery. J Pers Med. 2023;13(2):205. https://doi.org/10.3390/jpm13020205.
Van Abel KM, Yin LX, Price DL, Janus JR, Kasperbauer JL, Moore EJ. One-year outcomes for da vinci single port robot for transoral robotic surgery. Head Neck. 2020;42(8):2077–87. https://doi.org/10.1002/hed.26143.
Kneist W, Stein H, Rheinwald M. Da Vinci Single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience. Surg Endosc. 2020;34:3232–5. https://doi.org/10.1007/s00464-020-07444-4.
Seeliger B, Swanström LL. Robotics in flexible endoscopy: current status and future prospects. Curr Opin Gastroenterol. 2020;36(5):370–8. https://doi.org/10.1097/MOG.0000000000000670.
Lang S, Mattheis S, Hasskamp P, et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope. 2017;127(2):391–5. https://doi.org/10.1002/lary.26358.
Reisenauer J, Simoff MJ, Pritchett MA, et al. Ion: technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann Thorac Surg. 2022;113(1):308–15. https://doi.org/10.1016/j.athoracsur.2021.06.086.
Sean W. FDA clears J&J’s Ethicon’s Monarch surgical robot for urology procedures. Mass Device. https://www.massdevice.com/fda-clears-jjs-ethicons-monarch-surgical-robot-for-urology-procedures/utm_source=TrendMD&utm_medium=cpc&utm_campaign=Mass_Device_TrendMD_0. Accessed 2 May 2022.
Agrawal A, Hogarth DK, Murgu S. Robotic bronchoscopy for pulmonary lesions: a review of existing technologies and clinical data. J Thorac Dis. 2020;12(6):3279–86. https://doi.org/10.21037/jtd.2020.03.35.
Jelínek F, Arkenbout EA, Henselmans PWJ, Pessers R, Breedveld P. Classification of joints used in steerable instruments for minimally invasive surgery—a review of the state of the art. ASME J Med Devices. 2015;9(1):010801. https://doi.org/10.1115/1.4028649.
Webster R, Jones B. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29:1661–83. https://doi.org/10.1177/0278364910368147.
Jin S, Lee SK, Lee J, Han S. Kinematic model and real-time path generator for a wire-driven surgical robot arm with articulated joint structure. Appl Sci. 2019;9(19):4114. https://doi.org/10.3390/app9194114.
Do TN, Tjahjowidodo T, Lau MWS, Yamamoto T, Phee SJ. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics. 2014;24:12–22. https://doi.org/10.1016/j.mechatronics.2013.11.003.
Kim D, Kim H, Jin S. Recurrent neural network with preisach model for configuration-specific hysteresis modeling of tendon-sheath mechanism. IEEE Robot Autom Lett. 2022;7(2):2763–70. https://doi.org/10.1109/LRA.2022.3144769.
Article MathSciNet Google Scholar
Kim J, Kwon S, Moon Y, Kim K. Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator. IEEE/ASME Trans Mechatron. 2022;27(1):501–12. https://doi.org/10.1109/TMECH.2021.3067335.
Preusche C, Ortmaier T, Hirzinger G. Teleoperation concepts in minimal invasive surgery. Control Eng Pract. 2002;10(11):1245–50. https://doi.org/10.1016/S0967-0661(02)00084-9.
Comments (0)