Soft tissue surgical robot for minimally invasive surgery: a review

Darzi SA, Munz Y. The impact of minimally invasive surgical techniques. Annu Rev Med. 2004;55:223–37. https://doi.org/10.1146/annurev.med.55.091902.105248.

Article  Google Scholar 

Vierra M. Minimally invasive surgery. Annu Rev Med. 1995;46:147–58. https://doi.org/10.1146/annurev.med.46.1.147.

Article  Google Scholar 

Cuschieri A, Dubois F, Mouiel J, Mouret P, Becker H, Buess G, Trede M, Troidl H. The european experience with laparoscopic cholecystectomy. Am J Surg. 1991;161(3):385–7. https://doi.org/10.1016/0002-9610(91)90603-B.

Article  Google Scholar 

Franklin ME Jr, Rosenthal D, Abrego-Medina D, Dorman JP, Glass JL, Norem R, Diaz A. Prospective comparison of open vs. laparoscopic colon surgery for carcinoma. Five-year results. Dis Colon Rectum. 1996;39(10):35–46. https://doi.org/10.1007/BF020538045.

Article  Google Scholar 

Zelhart M, Kaiser AM. Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice. Surg Endosc. 2018;32(1):24–38. https://doi.org/10.1007/s00464-017-5796-2.

Article  Google Scholar 

Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–55. https://doi.org/10.1007/s00464-018-6079-2.

Article  Google Scholar 

Mendes V, Bruyere F, Escoffre JM, Binet A, Lardy H, Marret H, Marchal F, Hebert T. Experience implication in subjective surgical ergonomics comparison between laparoscopic and robot-assisted surgeries. J Robot Surg. 2020;14(1):115–21. https://doi.org/10.1007/s11701-019-00933-2.

Article  Google Scholar 

Lin L, Xu C, Shi Y, Zhou C, Zhu M, Chai G, Xie L. Preliminary clinical experience of robot-assisted surgery in treatment with genioplasty. Sci Rep. 2021;11(1):6365. https://doi.org/10.1038/s41598-021-85889-w.

Article  Google Scholar 

Cianci S, Rosati A, Rumolo V, Gueli Alletti S, Gallotta V, Turco LC, Corrado G, Vizzielli G, Fagotti A, Fanfani F, Scambia G, Uccella S. Robotic single-port platform in general, urologic, and gynecologic surgeries: a systematic review of the literature and meta-analysis. World J Surg. 2019;43(10):2401–19. https://doi.org/10.1007/s00268-019-05049-0.

Article  Google Scholar 

Roh CK, Choi S, Seo WJ, Cho M, Choi YY, Son T, Hyung WJ, Kim HI. Comparison of surgical outcomes between integrated robotic and conventional laparoscopic surgery for distal gastrectomy: a propensity score matching analysis. Sci Rep. 2020;10(1):485. https://doi.org/10.1038/s41598-020-57413-z.

Article  Google Scholar 

Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, Menon M, Montorsi F, Patel VR, Stolzenburg JU, Van der Poel H, Wilson TG, Zattoni F, Mottrie A. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):405–17. https://doi.org/10.1016/j.eururo.2012.05.045.

Article  Google Scholar 

Park JS, Choi GS, Park SY, Kim HJ, Ryuk JP. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg. 2012;99:1219–26. https://doi.org/10.1002/bjs.8841.

Article  Google Scholar 

Gosrisirikul C, Don Chang K, Raheem AA, Rha KH. New era of robotic surgical systems. Asian J Endosc Surg. 2018;11(4):291–9. https://doi.org/10.1111/ases.12660.

Article  Google Scholar 

Mayor N, Coppola ASJ, Challacombe B. Past, present and future of surgical robotics. Trends in Urology & Men’s Health. 2022;13(1):7–10. https://doi.org/10.1002/tre.834.

Article  Google Scholar 

Morton J, Hardwick RH, Tilney HS, et al. Preclinical evaluation of the Versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg Endosc. 2021;35:2169–77. https://doi.org/10.1007/s00464-020-07622-4.

Article  Google Scholar 

Hares L, Roberts P, Marshall K, Slack M. Using end-user feedback to optimize the design of the Versius Surgical System, a new robot-assisted device for use in minimal access surgery. BMJ Surg Interv Health Technol. 2019;1(1):e000019. https://doi.org/10.1136/bmjsit-2019-000019.

Article  Google Scholar 

Haig F, Medeiros ACB, Chitty K, Slack M. Usability assessment of Versius, a new robot-assisted surgical device for use in minimal access surgery. BMJ Surg Interv Health Technol. 2020;2(1):e000028. https://doi.org/10.1136/bmjsit-2019-000028.

Article  Google Scholar 

Wehrmann S, Tischendorf K, Mehlhorn T, Lorenz A, Gündel M, Rudolph H, Mirow L. Clinical implementation of the Versius robotic surgical system in visceral surgery-A single centre experience and review of the first 175 patients. Surg Endosc. 2023;37(1):528–34. https://doi.org/10.1007/s00464-022-09526-x.

Article  Google Scholar 

Raffaelli M, Gallucci P, Voloudakis N, Pennestrì F, De Cicco R, Arcuri G, De Crea C, Bellantone R. The new robotic platform Hugo™ RAS for lateral transabdominal adrenalectomy: a first world report of a series of five cases. Updates Surg. 2023;75(1):217–25. https://doi.org/10.1007/s13304-022-01410-6.

Article  Google Scholar 

Gueli AS, Chiantera V, Arcuri G, Gioè A, Oliva R, Monterossi G, Fanfani F, Fagotti A, Scambia G. Introducing the New Surgical Robot HUGO™ RAS: system description and docking settings for gynecological surgery. Front Oncol. 2022;12:898060. https://doi.org/10.3389/fonc.2022.898060.

Article  Google Scholar 

Totaro A, Campetella M, Bientinesi R, Gandi C, Palermo G, Russo A, Aceto P, Bassi P, Sacco E. The new surgical robotic platform HUGO™ RAS: System description and docking settings for robot-assisted radical prostatectomy. Urologia. 2022;89(4):603–9. https://doi.org/10.1177/03915603221107855.

Article  Google Scholar 

Kastelan Z, Hudolin T, Kulis T, Knezevic N, Penezic L, Maric M, Zekulic T. Upper urinary tract surgery and radical prostatectomy with Senhance® robotic system: single center experience-first 100 cases. Int J Med Robot. 2021;17(4):e2269. https://doi.org/10.1002/rcs.2269.

Article  Google Scholar 

Chang KD, Abdel Raheem A, Choi YD, Chung BH, Rha KH. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–8. https://doi.org/10.1111/bju.14245.

Article  Google Scholar 

Liatsikos E, Tsaturyan A, Kyriazis I, Kallidonis P, Manolopoulos D, Magoutas A. Market potentials of robotic systems in medical science: analysis of the Avatera robotic system. World J Urol. 2022;40(1):283–9. https://doi.org/10.1007/s00345-021-03809-z.

Article  Google Scholar 

Hinata N, Yamaguchi R, Kusuhara Y, et al. Hinotori surgical robot system, a novel robot-assisted surgical platform: preclinical and clinical evaluation. Int J Urol. 2022;29(10):1213–20. https://doi.org/10.1111/iju.14973.

Article  Google Scholar 

MicroPort. MicroPort® Toumai® Surgical Robot Receives NMPA Approval, Becoming the First Commercialized Four-Arm Laparoscopic Surgical Robot Developed in China. https://microport.com/news/microport-toumai-surgical-robot-receives-nmpa-approval-becoming-the-first-commercialized-four-arm-laparoscopic-surgical-robot-developed-in-china. Accessed 27 Jan 2022.

Morelli L, et al. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot Comp Assist Surg. 2016;12:724–34. https://doi.org/10.1002/rcs.1713.

Article  Google Scholar 

Lee SR, Roh A, Jeong K, Kim SH, Chae HC, Moon HS. First report comparing the two types of single-incision robotic sacrocolpopexy: single site using the da Vinci Xi or Si system and single port using the da Vinci SP system. Taiwan J Obstet Gynecol. 2021;60(1):60–5. https://doi.org/10.1016/j.tjog.2020.10.007.

Article  Google Scholar 

Kim JM, Lee SM, Seol A, Song JY, Ryu KJ, Lee S, Park HT, Cho HW, Min KJ, Hong JH, et al. Comparison of surgical outcomes between single-port laparoscopic surgery and da vinci single-port robotic surgery. J Pers Med. 2023;13(2):205. https://doi.org/10.3390/jpm13020205.

Article  Google Scholar 

Van Abel KM, Yin LX, Price DL, Janus JR, Kasperbauer JL, Moore EJ. One-year outcomes for da vinci single port robot for transoral robotic surgery. Head Neck. 2020;42(8):2077–87. https://doi.org/10.1002/hed.26143.

Article  Google Scholar 

Kneist W, Stein H, Rheinwald M. Da Vinci Single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience. Surg Endosc. 2020;34:3232–5. https://doi.org/10.1007/s00464-020-07444-4.

Article  Google Scholar 

Seeliger B, Swanström LL. Robotics in flexible endoscopy: current status and future prospects. Curr Opin Gastroenterol. 2020;36(5):370–8. https://doi.org/10.1097/MOG.0000000000000670.

Article  Google Scholar 

Lang S, Mattheis S, Hasskamp P, et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope. 2017;127(2):391–5. https://doi.org/10.1002/lary.26358.

Article  Google Scholar 

Reisenauer J, Simoff MJ, Pritchett MA, et al. Ion: technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann Thorac Surg. 2022;113(1):308–15. https://doi.org/10.1016/j.athoracsur.2021.06.086.

Article  Google Scholar 

Sean W. FDA clears J&J’s Ethicon’s Monarch surgical robot for urology procedures. Mass Device. https://www.massdevice.com/fda-clears-jjs-ethicons-monarch-surgical-robot-for-urology-procedures/utm_source=TrendMD&utm_medium=cpc&utm_campaign=Mass_Device_TrendMD_0. Accessed 2 May 2022.

Agrawal A, Hogarth DK, Murgu S. Robotic bronchoscopy for pulmonary lesions: a review of existing technologies and clinical data. J Thorac Dis. 2020;12(6):3279–86. https://doi.org/10.21037/jtd.2020.03.35.

Article  Google Scholar 

Jelínek F, Arkenbout EA, Henselmans PWJ, Pessers R, Breedveld P. Classification of joints used in steerable instruments for minimally invasive surgery—a review of the state of the art. ASME J Med Devices. 2015;9(1):010801. https://doi.org/10.1115/1.4028649.

Article  Google Scholar 

Webster R, Jones B. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29:1661–83. https://doi.org/10.1177/0278364910368147.

Article  Google Scholar 

Jin S, Lee SK, Lee J, Han S. Kinematic model and real-time path generator for a wire-driven surgical robot arm with articulated joint structure. Appl Sci. 2019;9(19):4114. https://doi.org/10.3390/app9194114.

Article  Google Scholar 

Do TN, Tjahjowidodo T, Lau MWS, Yamamoto T, Phee SJ. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics. 2014;24:12–22. https://doi.org/10.1016/j.mechatronics.2013.11.003.

Article  Google Scholar 

Kim D, Kim H, Jin S. Recurrent neural network with preisach model for configuration-specific hysteresis modeling of tendon-sheath mechanism. IEEE Robot Autom Lett. 2022;7(2):2763–70. https://doi.org/10.1109/LRA.2022.3144769.

Article  MathSciNet  Google Scholar 

Kim J, Kwon S, Moon Y, Kim K. Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator. IEEE/ASME Trans Mechatron. 2022;27(1):501–12. https://doi.org/10.1109/TMECH.2021.3067335.

Article  Google Scholar 

Preusche C, Ortmaier T, Hirzinger G. Teleoperation concepts in minimal invasive surgery. Control Eng Pract. 2002;10(11):1245–50. https://doi.org/10.1016/S0967-0661(02)00084-9.

Article 

Comments (0)

No login
gif