Brain-inspired learning rules for spiking neural network-based control: a tutorial

Jo Y, Hong S, Ha J, Hwang S. Visual slam-based vehicle control for autonomous valet parking. IEIE Trans Smart Process Comput. 2022;11(2):119–25.

MATH  Google Scholar 

Sa J-M, Choi K-S. Humanoid robot teleoperation system using a fast vision-based pose estimation and refinement method. IEIE Trans Smart Process Comput. 2021;10(1):24–30.

Article  MATH  Google Scholar 

Kim M, Zhang Y, Jin S. Soft tissue surgical robot for minimally invasive surgery: a review. Biomed Eng Lett. 2023;13(4):561–9.

Article  MATH  Google Scholar 

Li W, Tang S. Research on the application of intelligent technology based on the vector controller and wireless module in automotive manufacturing. IEIE Trans Smart Process Comput. 2024;13(3):197–208.

Article  MATH  Google Scholar 

Annaswamy AM, Fradkov AL. A historical perspective of adaptive control and learning. Annu Rev Control. 2021;52:18–41.

Article  MathSciNet  MATH  Google Scholar 

Bing Z, Meschede C, Röhrbein F, Huang K, Knoll AC. A survey of robotics control based on learning-inspired spiking neural networks. Front Neurorobot. 2018;12:35.

Article  Google Scholar 

Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT press; 2018.

MATH  Google Scholar 

Stagsted R, Vitale A, Binz J, Bonde Larsen L, Sandamirskaya Y, et al. Towards neuromorphic control: A spiking neural network based pid controller for uav.;2020. RSS

Gerstner W, Kistler WM. Spiking Neuron Models: Single Neurons, Populations. Cambridge: Plasticity. Cambridge University Press; 2002.

Book  MATH  Google Scholar 

Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629–36.

Article  MATH  Google Scholar 

Mahowald M. Vlsi analogs of neuronal visual processing: a synthesis of form and function. PhD thesis, California Institute of Technology Pasadena;1992

Lobo JL, Del Ser J, Bifet A, Kasabov N. Spiking neural networks and online learning: An overview and perspectives. Neural Netw. 2020;121:88–100.

Article  MATH  Google Scholar 

Albrecht DG, Geisler WS, Frazor RA, Crane AM. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol. 2002;88(2):888–913.

Article  Google Scholar 

Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. Proc IEEE. 2014;102(5):652–65.

Article  Google Scholar 

Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G-J, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst. 2015;34(10):1537–57.

Article  Google Scholar 

Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain S, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018;38(1):82–99.

Article  Google Scholar 

Schuman CD, Kulkarni SR, Parsa M, Mitchell JP, Kay B, et al. Opportunities for neuromorphic computing algorithms and applications. Nature Comput Sci. 2022;2(1):10–9.

Article  MATH  Google Scholar 

Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge: Cambridge University Press; 2014.

Book  MATH  Google Scholar 

Rathi N, Chakraborty I, Kosta A, Sengupta A, Ankit A, Panda P, Roy K. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware. ACM Comput Surv. 2023;55(12):1–49.

Article  Google Scholar 

Eshraghian JK, Ward M, Neftci EO, Wang X, Lenz G, Dwivedi G, Bennamoun M, Jeong DS, Lu WD. Training spiking neural networks using lessons from deep learning. Proceedings of the IEEE;2023

Ponulak F, Kasinski A. Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol Exp. 2011;71(4):409–33.

Article  MATH  Google Scholar 

Yi Z, Lian J, Liu Q, Zhu H, Liang D, Liu J. Learning rules in spiking neural networks: A survey. Neurocomputing. 2023;531:163–79.

Article  MATH  Google Scholar 

Hebb DO. The Organization of Behavior: A Neuropsychological Theory. Hove: Psychology press; 2005.

Book  MATH  Google Scholar 

Bliss TV, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.

Article  MATH  Google Scholar 

Lynch GS, Dunwiddie T, Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977;266(5604):737–9.

Article  Google Scholar 

Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science. 1997;275(5297):213–5.

Article  Google Scholar 

Bi G-q, Poo M-m. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J neuroscience. 1998;18(24):10464–72.

Article  MATH  Google Scholar 

Song S, Miller KD, Abbott LF. Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 2000;3(9):919–26.

Article  MATH  Google Scholar 

Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2(1):32–48.

Article  MATH  Google Scholar 

Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386.

Article  MATH  Google Scholar 

Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982;79(8):2554–8.

Article  MathSciNet  MATH  Google Scholar 

Izhikevich EM, Desai NS. Relating stdp to bcm. Neural Comput. 2003;15(7):1511–23.

Article  MATH  Google Scholar 

Pfister J-P, Gerstner W. Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci. 2006;26(38):9673–82.

Article  MATH  Google Scholar 

Bengio Y, Mesnard T, Fischer A, Zhang S, Wu Y. Stdp as presynaptic activity times rate of change of postsynaptic activity. arXiv preprint arXiv:1509.05936;2015

Caporale N, Dan Y. Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.

Article  MATH  Google Scholar 

Markram H, Gerstner W, Sjöström PJ. A history of spike-timing-dependent plasticity. Front synaptic neurosci. 2011;3:4.

Article  MATH  Google Scholar 

Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.

Article  MATH  Google Scholar 

Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.

Article  MATH  Google Scholar 

Kim S, Park S, Na B, Yoon S. Spiking-yolo: spiking neural network for energy-efficient object detection. In Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(7):11270–7.

Article  MATH  Google Scholar 

Bohte SM, Kok JN, La Poutré JA. Spikeprop: backpropagation for networks of spiking neurons. In: ESANN. 2000;48:419–24.

MATH  Google Scholar 

Ponulak F, Kasiński A. Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 2010;22(2):467–510.

Article  MathSciNet  MATH  Google Scholar 

Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci. 2006;9(3):420–8.

Article  MATH  Google Scholar 

Ghosh-Dastidar S, Adeli H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw. 2009;22(10):1419–31.

Article  MATH  Google Scholar 

Taherkhani A, Belatreche A, Li Y, Maguire LP. Dl-resume: A delay learning-based remote supervised method for spiking neurons. IEEE transactions on neural networks and learning systems. 2015;26(12):3137–49.

Article 

Comments (0)

No login
gif