Jo Y, Hong S, Ha J, Hwang S. Visual slam-based vehicle control for autonomous valet parking. IEIE Trans Smart Process Comput. 2022;11(2):119–25.
Sa J-M, Choi K-S. Humanoid robot teleoperation system using a fast vision-based pose estimation and refinement method. IEIE Trans Smart Process Comput. 2021;10(1):24–30.
Kim M, Zhang Y, Jin S. Soft tissue surgical robot for minimally invasive surgery: a review. Biomed Eng Lett. 2023;13(4):561–9.
Li W, Tang S. Research on the application of intelligent technology based on the vector controller and wireless module in automotive manufacturing. IEIE Trans Smart Process Comput. 2024;13(3):197–208.
Annaswamy AM, Fradkov AL. A historical perspective of adaptive control and learning. Annu Rev Control. 2021;52:18–41.
Article MathSciNet MATH Google Scholar
Bing Z, Meschede C, Röhrbein F, Huang K, Knoll AC. A survey of robotics control based on learning-inspired spiking neural networks. Front Neurorobot. 2018;12:35.
Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT press; 2018.
Stagsted R, Vitale A, Binz J, Bonde Larsen L, Sandamirskaya Y, et al. Towards neuromorphic control: A spiking neural network based pid controller for uav.;2020. RSS
Gerstner W, Kistler WM. Spiking Neuron Models: Single Neurons, Populations. Cambridge: Plasticity. Cambridge University Press; 2002.
Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629–36.
Mahowald M. Vlsi analogs of neuronal visual processing: a synthesis of form and function. PhD thesis, California Institute of Technology Pasadena;1992
Lobo JL, Del Ser J, Bifet A, Kasabov N. Spiking neural networks and online learning: An overview and perspectives. Neural Netw. 2020;121:88–100.
Albrecht DG, Geisler WS, Frazor RA, Crane AM. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol. 2002;88(2):888–913.
Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. Proc IEEE. 2014;102(5):652–65.
Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G-J, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst. 2015;34(10):1537–57.
Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain S, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018;38(1):82–99.
Schuman CD, Kulkarni SR, Parsa M, Mitchell JP, Kay B, et al. Opportunities for neuromorphic computing algorithms and applications. Nature Comput Sci. 2022;2(1):10–9.
Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge: Cambridge University Press; 2014.
Rathi N, Chakraborty I, Kosta A, Sengupta A, Ankit A, Panda P, Roy K. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware. ACM Comput Surv. 2023;55(12):1–49.
Eshraghian JK, Ward M, Neftci EO, Wang X, Lenz G, Dwivedi G, Bennamoun M, Jeong DS, Lu WD. Training spiking neural networks using lessons from deep learning. Proceedings of the IEEE;2023
Ponulak F, Kasinski A. Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol Exp. 2011;71(4):409–33.
Yi Z, Lian J, Liu Q, Zhu H, Liang D, Liu J. Learning rules in spiking neural networks: A survey. Neurocomputing. 2023;531:163–79.
Hebb DO. The Organization of Behavior: A Neuropsychological Theory. Hove: Psychology press; 2005.
Bliss TV, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.
Lynch GS, Dunwiddie T, Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977;266(5604):737–9.
Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science. 1997;275(5297):213–5.
Bi G-q, Poo M-m. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J neuroscience. 1998;18(24):10464–72.
Song S, Miller KD, Abbott LF. Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 2000;3(9):919–26.
Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2(1):32–48.
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386.
Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982;79(8):2554–8.
Article MathSciNet MATH Google Scholar
Izhikevich EM, Desai NS. Relating stdp to bcm. Neural Comput. 2003;15(7):1511–23.
Pfister J-P, Gerstner W. Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci. 2006;26(38):9673–82.
Bengio Y, Mesnard T, Fischer A, Zhang S, Wu Y. Stdp as presynaptic activity times rate of change of postsynaptic activity. arXiv preprint arXiv:1509.05936;2015
Caporale N, Dan Y. Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.
Markram H, Gerstner W, Sjöström PJ. A history of spike-timing-dependent plasticity. Front synaptic neurosci. 2011;3:4.
Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.
Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.
Kim S, Park S, Na B, Yoon S. Spiking-yolo: spiking neural network for energy-efficient object detection. In Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(7):11270–7.
Bohte SM, Kok JN, La Poutré JA. Spikeprop: backpropagation for networks of spiking neurons. In: ESANN. 2000;48:419–24.
Ponulak F, Kasiński A. Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 2010;22(2):467–510.
Article MathSciNet MATH Google Scholar
Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci. 2006;9(3):420–8.
Ghosh-Dastidar S, Adeli H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw. 2009;22(10):1419–31.
Taherkhani A, Belatreche A, Li Y, Maguire LP. Dl-resume: A delay learning-based remote supervised method for spiking neurons. IEEE transactions on neural networks and learning systems. 2015;26(12):3137–49.
Comments (0)