Janjigian YY, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020;21:821–31. https://doi.org/10.1016/s1470-2045(20)30169-8.
Article CAS PubMed PubMed Central Google Scholar
Li Y, et al. Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer. Theranostics. 2022;12:3818–33. https://doi.org/10.7150/thno.71833.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, et al. MCM6 is a critical transcriptional target of YAP to promote gastric tumorigenesis and serves as a therapeutic target. Theranostics. 2022;12:6509–26. https://doi.org/10.7150/thno.75431.
Article CAS PubMed PubMed Central Google Scholar
Kim H, Zaheer J, Choi EJ, Kim JS. Enhanced ASGR2 by microplastic exposure leads to resistance to therapy in gastric cancer. Theranostics. 2022;12:3217–36. https://doi.org/10.7150/thno.73226.
Article CAS PubMed PubMed Central Google Scholar
Zhao Q, et al. Immunotherapy for gastric cancer: dilemmas and prospect. Brief Funct Genomics. 2019;18:107–12. https://doi.org/10.1093/bfgp/ely019.
Article CAS PubMed Google Scholar
Xie J, Fu L, Jin L. Immunotherapy of gastric cancer: past, future perspective and challenges. Pathol Res Pract. 2021;218: 153322. https://doi.org/10.1016/j.prp.2020.153322.
Article CAS PubMed Google Scholar
Chen K, Wang X, Yang L, Chen Z. The anti-PD-1/PD-L1 immunotherapy for gastric esophageal cancer: a systematic review and meta-analysis and literature review. Cancer Control. 2021;28:1073274821997430. https://doi.org/10.1177/1073274821997430.
Article PubMed PubMed Central Google Scholar
Bai, Y. et al. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer. 2022 10:https://doi.org/10.1136/jitc-2021-004080.
Roudko V, et al. Lynch syndrome and MSI-H cancers: from mechanisms to “off-the-shelf” cancer vaccines. Front Immunol. 2021;12:757804. https://doi.org/10.3389/fimmu.2021.757804.
Article CAS PubMed PubMed Central Google Scholar
Janjigian YY, et al. CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 2018;36:2836–44. https://doi.org/10.1200/jco.2017.76.6212.
Article CAS PubMed PubMed Central Google Scholar
Shitara K, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet (London, England). 2018;392:123–33. https://doi.org/10.1016/s0140-6736(18)31257-1.
Article CAS PubMed Google Scholar
Catenacci DVT, et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22-05): a single-arm, phase 1b–2 trial. Lancet Oncol. 2020;21:1066–76. https://doi.org/10.1016/s1470-2045(20)30326-0.
Article CAS PubMed Google Scholar
Kang YK, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;390:2461–71. https://doi.org/10.1016/s0140-6736(17)31827-5.
Article CAS PubMed Google Scholar
Yamashita K, et al. Can PD-L1 expression evaluated by biopsy sample accurately reflect its expression in the whole tumour in gastric cancer? Br J Cancer. 2019;121:278–80. https://doi.org/10.1038/s41416-019-0515-5.
Article CAS PubMed PubMed Central Google Scholar
Wang F, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann Oncol. 2019;30:1479–86. https://doi.org/10.1093/annonc/mdz197.
Article CAS PubMed PubMed Central Google Scholar
Marabelle A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38:1–10. https://doi.org/10.1200/jco.19.02105.
Article CAS PubMed Google Scholar
Samstein RM, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6. https://doi.org/10.1038/s41588-018-0312-8.
Article CAS PubMed PubMed Central Google Scholar
Greally M, et al. Clinical and molecular predictors of response to immune checkpoint inhibitors in patients with advanced esophagogastric cancer. Clin Cancer Res. 2019;25:6160–9. https://doi.org/10.1158/1078-0432.Ccr-18-3603.
Article CAS PubMed PubMed Central Google Scholar
Shitara K, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1571–80. https://doi.org/10.1001/jamaoncol.2020.3370.
Bocian J, Januszkiewicz-Lewandowska D. Epstein-Barr virus infection - life cycle, methods of diagnosis, associated diseases. Postepy Hig Med Dosw (Online). 2011;65:286–98. https://doi.org/10.5604/17322693.943104.
Shinozaki A, et al. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010;70:4719–27. https://doi.org/10.1158/0008-5472.Can-09-4620.
Article CAS PubMed Google Scholar
Song Y, et al. Epstein-Barr virus-encoded miR-BART11 promotes tumor-associated macrophage-induced epithelial-mesenchymal transition via targeting FOXP1 in gastric cancer. Virology. 2020;548:6–16. https://doi.org/10.1016/j.virol.2020.05.011.
Article CAS PubMed Google Scholar
Sasaki S, et al. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer. 2019;22:486–96. https://doi.org/10.1007/s10120-018-0880-4.
Article CAS PubMed Google Scholar
Kawazoe A, et al. Clinicopathological features of 22C3 PD-L1 expression with mismatch repair, Epstein-Barr virus status, and cancer genome alterations in metastatic gastric cancer. Gastric Cancer. 2019;22:69–76. https://doi.org/10.1007/s10120-018-0843-9.
Article CAS PubMed Google Scholar
Rodriquenz, M. G. et al. MSI and EBV positive gastric cancer’s subgroups and their link with novel immunotherapy. J Clin Med. 2020; 9:https://doi.org/10.3390/jcm9051427.
Kim ST, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58. https://doi.org/10.1038/s41591-018-0101-z.
Article CAS PubMed Google Scholar
Zhu Y, Zhu X, Wei X, Tang C, Zhang W. HER2-targeted therapies in gastric cancer. Biochim Biophys Acta Rev Cancer. 2021;1876:188549. https://doi.org/10.1016/j.bbcan.2021.188549.
Article CAS PubMed Google Scholar
Baykara M, et al. Clinical significance of HER2 overexpression in gastric and gastroesophageal junction cancers. J Gastrointest Surg. 2015;19:1565–71. https://doi.org/10.1007/s11605-015-2888-y.
Bang YJ, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (London, England). 2010;376:687–97. https://doi.org/10.1016/s0140-6736(10)61121-x.
Article CAS PubMed Google Scholar
Lian J, et al. PD-L1 and HER2 expression in gastric adenocarcinoma and their prognostic significance. Dig Liver Dis. 2022;54:1419–27. https://doi.org/10.1016/j.dld.2022.01.128.
Article CAS PubMed Google Scholar
Chakrabarti, J. et al. Disruption of Her2-induced PD-L1 Inhibits tumor cell immune evasion in patient-derived gastric cancer organoids. Cancers. 2021; 13:https://doi.org/10.3390/cancers13246158.
Ishigami S, et al. Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer. Cancer Lett. 2000;159:103–8. https://doi.org/10.1016/s0304-3835(00)00542-5.
Article CAS PubMed Google Scholar
Kono K, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clinical Cancer Res. 2002;8:3394–400.
Muro K, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26. https://doi.org/10.1016/s1470-2045(16)00175-3.
Article CAS PubMed Google Scholar
Moehler M, et al. Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: results from JAVELIN Gastric 100. J Clin Oncol. 2021;39:966–77. https://doi.org/10.1200/jco.20.00892.
Comments (0)