Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

Article  PubMed  Google Scholar 

Li Y, Wei J, Xu C, Zhao Z, You T. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS ONE. 2014;9: e94508. https://doi.org/10.1371/journal.pone.0094508.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakubowska K, Pryczynicz A, Dymicka-Piekarska V, Famulski W, Guzińska-Ustymowicz K. Immunohistochemical expression and serum level of survivin protein in colorectal cancer patients. Oncol Lett. 2016;12:3591–7. https://doi.org/10.3892/ol.2016.5075.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Maghrabi J, Al-Ahwal M, Buhmeida A, Syrjänen K, Sibyani A, Emam E, Ghanim A, Al-Qahtani M. Expression of cell cycle regulators p21 and p27 as predictors of disease outcome in colorectal carcinoma. J Gastrointest Cancer. 2012;43:279–87. https://doi.org/10.1007/s12029-011-9292-y.

Article  CAS  PubMed  Google Scholar 

Simpson KL, Cawthorne C, Zhou C, Hodgkinson CL, Walker MJ, Trapani F, Kadirvel M, Brown G, Dawson MJ, MacFarlane M, Williams KJ, Whetton AD, Dive C. A caspase-3 “death-switch” in colorectal cancer cells for induced and synchronous tumor apoptosis in vitro and in vivo facilitates the development of minimally invasive cell death biomarkers. Cell Death Dis. 2013;4: e613. https://doi.org/10.1038/cddis.2013.137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh HJ, Bae JM, Wen X, Jung S, Kim Y, Kim KJ, Cho NY, Kim JH, Han SW, Kim TY, Kang GH. p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br J Cancer. 2019;120:797–805. https://doi.org/10.1038/s41416-019-0429-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother. 2020;131: 110676. https://doi.org/10.1016/j.biopha.2020.110676.

Article  CAS  PubMed  Google Scholar 

Basak D, Uddin M.N, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel). (2020); 12. https://doi.org/10.3390/cancers12113336.

Dehghanzad M, Mohammadi M, Nejati M, Pouremamali F, Maroufi NF, Akbarzadeh M, Samadi N, Nouri M. The potential therapeutic effect of melatonin in oxaliplatin combination therapy against chemoresistant colorectal cancer cells. Mol Biol Rep. 2024;51:348. https://doi.org/10.1007/s11033-024-09316-9.

Article  CAS  PubMed  Google Scholar 

Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics. 2024;24:150. https://doi.org/10.1007/s10142-024-01431-x.

Article  CAS  PubMed  Google Scholar 

Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 2018;53:667–82. https://doi.org/10.1080/10409238.2018.1556578.

Article  CAS  PubMed  Google Scholar 

Liu C, Liu D, Wang F, Xie J, Liu Y, Wang H, Rong J, Xie J, Wang J, Zeng R, Zhou F, Peng J, Xie Y. Identification of a glycolysis- and lactate-related gene signature for predicting prognosis, immune microenvironment, and drug candidates in colon adenocarcinoma. Front Cell Dev Biol. 2022;10: 971992. https://doi.org/10.3389/fcell.2022.971992.

Article  PubMed  PubMed Central  Google Scholar 

Mitchel J, Bajaj P, Patil K, Gunnarson A, Pourchet E, Kim YN, Skolnick J, Pai SB. Computational Identification of Stearic Acid as a Potential PDK1 Inhibitor and In Vitro Validation of Stearic Acid as Colon Cancer Therapeutic in Combination with 5-Fluorouracil. Cancer Inform. 2021;20:11769351211065980. https://doi.org/10.1177/11769351211065979.

Article  PubMed  PubMed Central  Google Scholar 

Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11:797. https://doi.org/10.1038/s41419-020-02998-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Zhang L, Zou Y, Tao Y, Wang B, Li B, Liu R, Wang B, Ding L, Cui Q, Lin J, Mao B, Xiong W, Yu M. Modulating p-AMPK/mTOR Pathway of Mitochondrial Dysfunction Caused by MTERF1 Abnormal Expression in Colorectal Cancer Cells. Int J Mol Sci. (2022); 23. https://doi.org/10.3390/ijms232012354.

Wang YN, Lu YX, Liu J, Jin Y, Bi HC, Zhao Q, Liu ZX, Li YQ, Hu JJ, Sheng H, Jiang YM, Zhang C, Tian F, Chen Y, Pan ZZ, Chen G, Zeng ZL, Liu KY, Ogasawara M, Yun JP, Ju HQ, Feng JX, Xie D, Gao S, Jia WH, Kopetz S, Xu RH, Wang F. AMPKα1 confers survival advantage of colorectal cancer cells under metabolic stress by promoting redox balance through the regulation of glutathione reductase phosphorylation. Oncogene. 2020;39:637–50. https://doi.org/10.1038/s41388-019-1004-2.

Article  CAS  PubMed  Google Scholar 

Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, Zhang J, Zhang JP, Song YL, Ma D, Zhang XP, Miao CH. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun. 2020;11:1869. https://doi.org/10.1038/s41467-020-15795-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorolla M.A, Hidalgo I, Sorolla A, Montal R, Pallisé O, Salud A, Parisi E. Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers (Basel). (2021); 13. https://doi.org/10.3390/cancers13205037.

Koka PS, Mondal D, Schultz M, Abdel-Mageed AB, Agrawal KC. Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Exp Biol Med (Maywood). 2010;235:751–60. https://doi.org/10.1258/ebm.2010.009369.

Article  CAS  PubMed  Google Scholar 

Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS ONE. 2013;8: e75356. https://doi.org/10.1371/journal.pone.0075356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee Y.M., Kim G.H., Park E.J., Oh T.I, Lee S, Kan S.Y., Kang H, Kim B.M, Kim J.H., Lim J.H. Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis. Int J Mol Sci. (2019); 20. https://doi.org/10.3390/ijms20051092.

Al-Hayali M, Garces A, Stocks M., Collins H., Bradshaw T.D. Concurrent Reactive Oxygen Species Generation and Aneuploidy Induction Contribute to Thymoquinone Anticancer Activity. Molecules. (2021); 26. https://doi.org/10.3390/molecules26175136.

Karim S, Burzangi A.S., Ahmad A., Siddiqui N.A., Ibrahim I.M., Sharma P., Abualsunun W.A., Gabr G.A. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int J Mol Sci. (2022); 23. https://doi.org/10.3390/ijms23042305.

Idris S, Refaat B, Almaimani RA, Ahmed HG, Ahmad J, Alhadrami M, El-Readi MZ, Elzubier ME, Alaufi HAA, Al-Amin B, Alghamdi AA, Bahwerth F, Minshawi F, Kabrah SM, Aslam A. Enhanced in vitro tumoricidal effects of 5-Fluorouracil, thymoquinone, and active vitamin D3 triple therapy against colon cancer cells by attenuating the PI3K/AKT/mTOR pathway. Life Sci. 2022;296: 120442. https://doi.org/10.1016/j.lfs.2022.120442.

Article  CAS  PubMed  Google Scholar 

Kensara OA, El-Shemi AG, Mohamed AM, Refaat B, Idris S, Ahmad J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug Des Devel Ther. 2016;10:2239–53. https://doi.org/10.2147/dddt.S109721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farrash WF, Aslam A, Almaimani R, Minshawi F, Almasmoum H, Alsaegh A, Iqbal MS, Tabassum A, Elzubier ME, El-Readi MZ, Mahbub AA, Idris S, Refaat B. Metformin and thymoquinone co-treatment enhance 5-fluorouracil cytotoxicity by suppressing the PI3K/mTOR/HIF1alpha pathway and increasing oxidative stress in colon cancer cells. BioFactors. 2023;49:831–48. https://doi.org/10.1002/biof.1947.

Article  CAS  PubMed  Google Scholar 

Mantle D, Rowbottom H, Jones J, Potts IM, Turton N, Dewsbury M, Lopez-Lluch G, Hargreaves IP. Energy Metabolism as a Therapeutic Target in Cancer: The Role of Coenzyme Q10. Oxygen. 2024;4:122–38.

Article  CAS  Google Scholar 

Ghasempour Dabaghi G, Rabiee Rad M, Mohammad-Zamani M, Karimi Shervedani A, Bahrami-Samani F, Heshmat-Ghahdarijani K. The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers. Curr Probl Cancer. 2024;48:101063. https://doi.org/10.1016/j.currproblcancer.2024.101063.

Article  Google Scholar 

Cooney RV, Dai Q, Gao YT, Chow WH, Franke AA, Shu XO, Li H, Ji B, Cai Q, Chai W, Zheng W. Low plasma coenzyme Q(10) levels and breast cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev. 2011;20:1124–30. https://doi.org/10.1158/1055-9965.Epi-10-1261.

Comments (0)

No login
gif