Al-Amoudi A, Studer D, Dubochet J (2005) Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150:109–121. https://doi.org/10.1016/j.jsb.2005.01.003
Article CAS PubMed Google Scholar
Amos LA, Henderson R, Unwin PN (1982) Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol 39:183–231. https://doi.org/10.1016/0079-6107(83)90017-2
Article CAS PubMed Google Scholar
Ashhurst DE (1967) Z-line of the flight muscle of belostomatid water bugs. J Mol Biol 27:385–389. https://doi.org/10.1016/0022-2836(67)90027-7
Article CAS PubMed Google Scholar
Bullard B, Goulding D, Ferguson C, Leonard K (1999) Links in the chain: the contribution of kettin to the elasticity of insect muscles. In: Pollack G, Granzier H (eds) Elastic filaments of the cell. Kluwer Academic Press, Boston, pp 207–220
Bullard B, Burkart C, Labeit S, Leonard K (2005) The function of elastic proteins in the oscillatory contraction of insect flight muscle. J Muscle Res Cell Motil 26:479–485. https://doi.org/10.1007/s10974-005-9032-7
Article CAS PubMed Google Scholar
Bullard B, Garcia T, Benes V, Leake MC, Linke WA, Oberhauser AF (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc Natl Acad Sci USA 103:4451–4456. https://doi.org/10.1073/pnas.0509016103
Article CAS PubMed PubMed Central Google Scholar
Burgoyne T, Heumann JM, Morris EP, Knupp C, Liu J, Reedy MK, Taylor KA, Wang K, Luther PK (2019) Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. Proc Natl Acad Sci USA 116:15534–15539. https://doi.org/10.1073/pnas.1902235116
Article CAS PubMed PubMed Central Google Scholar
Carroni M, Saibil HR (2016) Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95:78–85. https://doi.org/10.1016/j.ymeth.2015.11.023
Article CAS PubMed PubMed Central Google Scholar
Cheng NQ, Deatherage JF (1989) Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol 108:1761–1774. https://doi.org/10.1083/jcb.108.5.1761
Article CAS PubMed Google Scholar
Cope J, Heumann J, Hoenger A (2011) Cryo-electron tomography for structural characterization of macromolecular complexes. Curr Protoc Protein Sci Chap 65:17–13. https://doi.org/10.1002/0471140864.ps1713s65
Deatherage JF, Cheng NQ, Bullard B (1989) Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol 108:1775–1782. https://doi.org/10.1083/jcb.108.5.1775
Article CAS PubMed Google Scholar
Dubrovsky A, Sorrentino S, Harapin J, Sapra KT, Medalia O (2015) Developments in cryo-electron tomography for in situ structural analysis. Arch Biochem Biophys 581:78–85. https://doi.org/10.1016/j.abb.2015.04.006
Article CAS PubMed Google Scholar
Ferguson C, Lakey A, Hutchings A, Butcher GW, Leonard KR, Bullard B (1994) Cytoskeletal proteins of insect muscle: location of zeelins in Lethocerus flight and leg muscle. J Cell Sci 107(Pt 5):1115–1129
Article CAS PubMed Google Scholar
Frank D, Frey N (2011) Cardiac Z-disc signaling network. J Biol Chem 286:9897–9904. https://doi.org/10.1074/jbc.R110.174268
Article CAS PubMed PubMed Central Google Scholar
Frank D, Kuhn C, Katus HA, Frey N (2006) The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 84:446–468. https://doi.org/10.1007/s00109-005-0033-1
Article CAS PubMed Google Scholar
Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 a reconstruction of rotavirus VP6. Elife 4:e06980. https://doi.org/10.7554/eLife.06980
Article PubMed PubMed Central Google Scholar
Hampton CM, Taylor DW, Taylor KA (2007) Novel structures for alpha-actinin:F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton. J Mol Biol 368:92–104. https://doi.org/10.1016/j.jmb.2007.01.071
Article CAS PubMed PubMed Central Google Scholar
Hanson J, Lowy J (1963) The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol 6:46–60. https://doi.org/10.1016/s0022-2836(63)80081-9
Holmes KC, Tregear RT, Barrington Leigh J (1980) Interpretation of the low angle X-ray diffraction from insect muscle in rigor. Proc Roy Soc B Biol Sci 207:13–33
Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308. https://doi.org/10.1016/s0022-2836(63)80008-x
Article CAS PubMed Google Scholar
Imamura M, Endo T, Kuroda M, Tanaka T, Masaki T (1988) Substructure and higher structure of chicken smooth muscle alpha-actinin molecule. J Biol Chem 263:7800–7805
Article CAS PubMed Google Scholar
Knupp C, Luther PK, Squire JM (2002) Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band. J Mol Biol 322:731–739. https://doi.org/10.1016/s0022-2836(02)00819-7
Article CAS PubMed Google Scholar
Kulke M, Neagoe C, Kolmerer B, Minajeva A, Hinssen H, Bullard B, Linke WA (2001) Kettin, a major source of myofibrillar stiffness in drosophila indirect flight muscle. J Cell Biol 154:1045–1057. https://doi.org/10.1083/jcb.200104016
Article CAS PubMed PubMed Central Google Scholar
Lakey A, Labeit S, Gautel M, Ferguson C, Barlow DP, Leonard K, Bullard B (1993) Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 12:2863–2871. https://doi.org/10.1002/j.1460-2075.1993.tb05948.x
Article CAS PubMed PubMed Central Google Scholar
Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau PW, Lyumkis D, Potter CS, Carragher B (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166:95–102. https://doi.org/10.1016/j.jsb.2009.01.002
Article CAS PubMed PubMed Central Google Scholar
Lehrer SS (1981) Damage to actin filaments by glutaraldehyde: protection by tropomyosin. J Cell Biol 90:459–466
Article CAS PubMed Google Scholar
Liu J, Taylor DW, Taylor KA (2004) A 3-D reconstruction of smooth muscle alpha-actinin by cryoEM reveals two different conformations at the actin-binding region. J Mol Biol 338:115–125. https://doi.org/10.1016/j.jmb.2004.02.034
Article CAS PubMed Google Scholar
Luther PK (2000) Three-dimensional structure of a vertebrate muscle Z-band: implications for titin and alpha-actinin binding. J Struct Biol 129:1–16. https://doi.org/10.1006/jsbi.1999.4207
Article CAS PubMed Google Scholar
Mallick SP, Carragher B, Potter CS, Kriegman DJ (2005) ACE: automated CTF estimation. Ultramicroscopy 104:8–29. https://doi.org/10.1016/j.ultramic.2005.02.004
Article CAS PubMed Google Scholar
Maupin-Szamier P, Pollard TD (1978) Actin filament destruction by osmium tetroxide. J Cell Biol 77:837–852
Article CAS PubMed Google Scholar
Milligan RA, Flicker PF (1987) Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J Cell Biol 105:29–39
Article CAS PubMed Google Scholar
Morris EP, Nneji G, Squire JM (1990) The three-dimensional structure of the nemaline rod Z-band. J Cell Biol 111:2961–2978
Article CAS PubMed Google Scholar
Noble AJ, Stagg SM (2015) Automated batch fiducial-less tilt-series alignment in appion using protomo. J Struct Biol 192:270–278. https://doi.org/10.1016/j.jsb.2015.10.003
Article PubMed PubMed Central Google Scholar
Reedy MK (1967) Cross-bridges and periods in insect flight muscle. Am Zool 7:465–481. https://doi.org/10.1093/icb/7.3.465
Reedy MK (1968) Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol 31:155–176. https://doi.org/10.1016/0022-2836(68)90437-3
Comments (0)