Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637–53. https://doi.org/10.1007/s00134-020-05944-4.
Article PubMed PubMed Central Google Scholar
Sakr Y, Lobo SM, Moreno RP, Gerlach H, Ranieri VM, Michalopoulos A, et al. Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Crit Care. 2012;16(6):R222. https://doi.org/10.1186/cc11868.
Article PubMed PubMed Central Google Scholar
Viglianti EM, Kramer R, Admon AJ, Sjoding MW, Hodgson CL, Bellomo R, et al. Late organ failures in patients with prolonged intensive care unit stays. J Crit Care. 2018;46:55–7. https://doi.org/10.1016/j.jcrc.2018.03.029.
Article PubMed PubMed Central Google Scholar
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, et al. The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev. 2015;95(3):1025–109. https://doi.org/10.1152/physrev.00028.2014.
Article CAS PubMed PubMed Central Google Scholar
Thiessen SE, Van den Berghe G, Vanhorebeek I. Mitochondrial and endoplasmic reticulum dysfunction and related defense mechanisms in critical illness-induced multiple organ failure. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt B):2534–45. https://doi.org/10.1016/j.bbadis.2017.02.015.
BonDurant LD, Potthoff MJ. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu Rev Nutr. 2018;38:173–96. https://doi.org/10.1146/annurev-nutr-071816-064800.
Article CAS PubMed PubMed Central Google Scholar
Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: Systemic enhancer of longevity. Cell Signal. 2017;40:10–21. https://doi.org/10.1016/j.cellsig.2017.08.009.
Article CAS PubMed Google Scholar
Ji K, Zheng J, Lv J, Xu J, Ji X, Luo YB, et al. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1alpha pathway. Free Radic Biol Med. 2015;84:161–70. https://doi.org/10.1016/j.freeradbiomed.2015.03.020.
Article CAS PubMed Google Scholar
Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013;19(1):83–92. https://doi.org/10.1038/nm.3014.
Article CAS PubMed Google Scholar
Kim SH, Kim KH, Kim HK, Kim MJ, Back SH, Konishi M, et al. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress. Diabetologia. 2015;58(4):809–18. https://doi.org/10.1007/s00125-014-3475-6.
Article CAS PubMed Google Scholar
Wang L, Ishihara T, Ibayashi Y, Tatsushima K, Setoyama D, Hanada Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia. 2015;58(10):2371–80. https://doi.org/10.1007/s00125-015-3704-7.
Article CAS PubMed Google Scholar
Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol (Oxf). 2009;71(3):369–75. https://doi.org/10.1111/j.1365-2265.2008.03502.x.
Article CAS PubMed Google Scholar
Lee JH, Kang YE, Chang JY, Park KC, Kim HW, Kim JT, et al. An engineered FGF21 variant, LY2405319, can prevent non-alcoholic steatohepatitis by enhancing hepatic mitochondrial function. Am J Transl Res. 2016;8(11):4750–63.
CAS PubMed PubMed Central Google Scholar
Zhu S, Wu Y, Ye X, Ma L, Qi J, Yu D, et al. FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy. Mol Cell Biochem. 2016;420(1–2):107–19. https://doi.org/10.1007/s11010-016-2774-2.
Article CAS PubMed Google Scholar
Tezze C, Romanello V, Sandri M. FGF21 as modulator of metabolism in health and disease. Front Physiol. 2019;10:419. https://doi.org/10.3389/fphys.2019.00419.
Article PubMed PubMed Central Google Scholar
Kohara M, Masuda T, Shiizaki K, Akimoto T, Watanabe Y, Honma S, et al. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease. PLoS One. 2017;12(6):e0178971. https://doi.org/10.1371/journal.pone.0178971.
Chou RH, Huang PH, Hsu CY, Chang CC, Leu HB, Huang CC, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016;6:33953. https://doi.org/10.1038/srep33953.
Article CAS PubMed PubMed Central Google Scholar
Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle. 2019;10(3):630–42. https://doi.org/10.1002/jcsm.12409.
Article PubMed PubMed Central Google Scholar
Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 2017;25(6):1374-89.e6. https://doi.org/10.1016/j.cmet.2017.04.021.
Article CAS PubMed PubMed Central Google Scholar
Thiessen SE, Vanhorebeek I, Derese I, Gunst J, Van den Berghe G. FGF21 Response to critical illness: effect of blood glucose control and relation with cellular stress and survival. J Clin Endocrinol Metab. 2015;100(10):E1319–27. https://doi.org/10.1210/jc.2015-2700.
Article CAS PubMed Google Scholar
Gariani K, Drifte G, Dunn-Siegrist I, Pugin J, Jornayvaz FR. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocr Connect. 2013;2(3):146–53. https://doi.org/10.1530/EC-13-0040.
Article CAS PubMed PubMed Central Google Scholar
Feingold KR, Grunfeld C, Heuer JG, Gupta A, Cramer M, Zhang T, et al. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology. 2012;153(6):2689–700. https://doi.org/10.1210/en.2011-1496.
Article CAS PubMed PubMed Central Google Scholar
Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot DJ, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016;166:1512–25. https://doi.org/10.1016/j.cell.2016.07.026.
Article CAS PubMed PubMed Central Google Scholar
Li JY, Wang N, Khoso MH, Shen CB, Guo MZ, Pang XX, et al. FGF-21 Elevated IL-10 production to correct LPS-induced inflammation. Inflammation. 2018;41(3):751–9. https://doi.org/10.1007/s10753-018-0729-3.
Article CAS PubMed Google Scholar
Gao J, Liu Q, Li J, Hu C, Zhao W, Ma W, et al. Fibroblast Growth Factor 21 dependent TLR4/MYD88/NF-kappaB signaling activation is involved in lipopolysaccharide-induced acute lung injury. Int Immunopharmacol. 2020;80:106219. https://doi.org/10.1016/j.intimp.2020.106219.
Chen J, Hu J, Liu H, Xiong Y, Zou Y, Huang W, et al. FGF21 protects the blood-brain barrier by upregulating PPARgamma via FGFR1/beta-klotho after traumatic brain injury. J Neurotrauma. 2018;35(17):2091–103. https://doi.org/10.1089/neu.2017.5271.
Shahror RA, Linares GR, Wang Y, Hsueh SC, Wu CC, Chuang DM, et al. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury. J Neurotrauma. 2020;37(1):14–26. https://doi.org/10.1089/neu.2019.6422.
Ye D, Wang Y, Li H, Jia W, Man K, Lo CM, et al. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1alpha-mediated antioxidant capacity in mice. Hepatology. 2014;60(3):977–89. https://doi.org/10.1002/hep.27060.
Article CAS PubMed Google Scholar
Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, et al. Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem. 2015;403(1–2):287–99. https://doi.org/10.1007/s11010-015-2358-6.
Article CAS PubMed Google Scholar
Li F, Liu Z, Tang C, Cai J, Dong Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury. FASEB J. 2018;32(6):3423–33. https://doi.org/10.1096/fj.201701316R.
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Ma J, Yang X, Li Q, Lin Z, Gong F. SIRT1 mediates effects of FGF21 to ameliorate cisplatin-induced acute kidney injury. Front Pharmacol. 2020;10(11):241. https://doi.org/10.3389/fphar.2020.00241.
Derde S, Thiessen S, Goossens C, Dufour T, Van den Berghe G, Langouche L. Use of a central venous line for fluids, drugs and nutrient administration in a mouse model of critical illness. J Vis Exp. 2017(123). https://doi.org/10.3791/55553.
Marques M, Vander Perre S, Aertgeerts A, Derde S, Guiza F, Casaer MP, et al. Critical illness induces nutrient-independent adipogenesis and accumulation of alternatively activated tissue macrophages. Crit Care. 2013;17(5):R193. https://doi.org/10.1186/cc12887.
Article PubMed PubMed Central Google Scholar
Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, et al. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9. https://doi.org/10.1038/nmeth.1455.
Article CAS PubMed Google Scholar
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009;106(26):10853–8. https://doi.org/10.1073/pnas.0904187106.
Article CAS PubMed PubMed Central Google Scholar
Goossens C, Marques MB, Derde S, Vander Perre S, Dufour T, Thiessen SE, et al. Premorbid obesity, but not nutrition, prevents critical illness-induced muscle wasting and weakness. J Cachexia Sarcopenia Muscle. 2017;8(1):89–101. https://doi.org/10.1002/jcsm.12131.
Comments (0)