Kalluri R, LeBleu VS. The biology,function, and biomedical applications of exosomes. Science (1979) 2020;367. https://doi.org/10.1126/science.aau6977
Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.
Article PubMed CAS Google Scholar
Abbott A. FedEx for your cells: this biological delivery service could treat disease. Nature. 2023;621:462–4. https://doi.org/10.1038/d41586-023-02906-w.
Article PubMed CAS Google Scholar
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/s41565-021-00931-2.
Article PubMed CAS Google Scholar
Zhao Z, Wijerathne H, Godwin AK, Soper SA. Isolation and analysis methods of extracellular vesicles (EVs). Extracell Vesicles Circ Nucl Acids 2021. https://doi.org/10.20517/evcna.2021.07
Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat Protoc. 2023. https://doi.org/10.1038/s41596-023-00811-0.
Article PubMed PubMed Central Google Scholar
Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332–43. https://doi.org/10.1038/s41556-018-0040-4.
Article PubMed PubMed Central CAS Google Scholar
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7. https://doi.org/10.1080/20013078.2018.1535750.
Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14:228–32. https://doi.org/10.1038/nmeth.4185.
Article PubMed CAS Google Scholar
Li S, Man Q, Gao X, Lin H, Wang J, Su F, et al. Tissue-derived extracellular vesicles in cancers and non‐cancer diseases: Present and future. J Extracell Vesicles. 2021;10. https://doi.org/10.1002/jev2.12175.
Qin B, Hu X, Su Z, Zeng X, Ma H, Xiong K. Tissue-derived extracellular vesicles: Research progress from isolation to application. Pathol Res Pract. 2021;226:153604. https://doi.org/10.1016/j.prp.2021.153604.
Article PubMed CAS Google Scholar
van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369–82. https://doi.org/10.1038/s41580-022-00460-3.
Article PubMed CAS Google Scholar
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to isolate and purify clinical Grade Extracellular vesicles for medical applications. Cells. 2022;11:186. https://doi.org/10.3390/cells11020186.
Article PubMed PubMed Central CAS Google Scholar
Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, et al. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio. 2022;12:2213–26. https://doi.org/10.1002/2211-5463.13504.
Article PubMed PubMed Central CAS Google Scholar
Rome S, Forterre A, Mizgier ML, Bouzakri K. Skeletal muscle-released Extracellular vesicles: state of the art. Front Physiol. 2019;10. https://doi.org/10.3389/fphys.2019.00929.
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: modulators of disease progression. Front Physiol. 2023;14. https://doi.org/10.3389/fphys.2023.1130063.
Watanabe S, Sudo Y, Makino T, Kimura S, Tomita K, Noguchi M, et al. Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment. PNAS Nexus. 2022;1. https://doi.org/10.1093/pnasnexus/pgac173.
Wang K, Frey N, Garcia A, Man K, Yang Y, Gualerzi A, et al. Nanotopographical cues Tune the therapeutic potential of Extracellular vesicles for the treatment of aged skeletal muscle injuries. ACS Nano. 2023;17:19640–51. https://doi.org/10.1021/acsnano.3c02269.
Article PubMed PubMed Central CAS Google Scholar
Ran N, Gao X, Dong X, Li J, Lin C, Geng M et al. Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials 2020;236. https://doi.org/10.1016/j.biomaterials.2020.119826
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015;589:1257–65. https://doi.org/10.1016/j.febslet.2015.03.031.
Article PubMed CAS Google Scholar
Aminzadeh MA, Rogers RG, Fournier M, Tobin RE, Guan X, Childers MK et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem Cell Reports 2018;10. https://doi.org/10.1016/j.stemcr.2018.01.023
Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: wnt signaling and stem cell control. Science. 1979;2014346. https://doi.org/10.1126/science.1248012.
von Maltzahn J, Bentzinger CF, Rudnicki MA. Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol. 2012;14:186–91. https://doi.org/10.1038/ncb2404.
Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA. Wnt7a activates the Planar Cell Polarity Pathway to drive the symmetric expansion of Satellite Stem cells. Cell Stem Cell. 2009;4:535–47. https://doi.org/10.1016/j.stem.2009.03.013.
Article PubMed PubMed Central CAS Google Scholar
Bentzinger CF, von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K, et al. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol. 2014;205:97–111. https://doi.org/10.1083/jcb.201310035.
Article PubMed PubMed Central CAS Google Scholar
von Maltzahn J, Renaud J-MM, Parise G, Rudnicki MA. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A. 2012;109:20614–9. https://doi.org/10.1073/pnas.1215765109.
Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA. Fibronectin regulates Wnt7a signaling and Satellite Cell expansion. Cell Stem Cell. 2013;12:75–87. https://doi.org/10.1016/j.stem.2012.09.015.
Article PubMed PubMed Central CAS Google Scholar
Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by frizzled. Science (1979) 2012;336:59–64. https://doi.org/10.1126/science.1222879
Mehta S, Hingole S, Chaudhary V. The emerging mechanisms of wnt secretion and signaling in Development. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.714746.
Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14:1036–45. https://doi.org/10.1038/ncb2574.
Article PubMed CAS Google Scholar
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56. https://doi.org/10.1016/j.cell.2012.11.024.
Article PubMed CAS Google Scholar
Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C. Induction and transport of wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget. 2013;4:2057–66. https://doi.org/10.18632/oncotarget.1336.
Article PubMed PubMed Central Google Scholar
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Xiao F, Ming H, et al. Wnt binding to Coatomer proteins directs secretion on exosomes independently of palmitoylation. BioRxiv. 2023. https://doi.org/10.1101/2023.05.30.542914.
Article PubMed PubMed Central Google Scholar
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Teresa Rejas M et al. Wnt7a is required for regeneration of Dystrophic Skeletal Muscle n.d. https://doi.org/10.1101/2024.01.24.577041
Le Gall L, Ouandaogo ZG, Anakor E, Connolly O, Butler Browne G, Laine J, et al. Optimized method for extraction of exosomes from human primary muscle cells. Skelet Muscle. 2020;10:20. https://doi.org/10.1186/s13395-020-00238-1.
Article PubMed PubMed Central CAS Google Scholar
Le Bihan MC, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, Lainé J, et al. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteom. 2012;77:344–56. https://doi.org/10.1016/j.jprot.2012.09.008.
Crescitelli R, Lä C, Lö J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc n d. https://doi.org/10.1038/s41596-020-00466-1
Visan KS, Lobb RJ, Ham S, Lima LG, Palma C, Edna CPZ, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11. https://doi.org/10.1002/jev2.12266.
Comments (0)